5 research outputs found

    Simulated Warming Differentially Affects the Growth and Competitive Ability of Centaurea maculosa Populations from Home and Introduced Ranges

    Get PDF
    Climate warming may drive invasions by exotic plants, thereby raising concerns over the risks of invasive plants. However, little is known about how climate warming influences the growth and competitive ability of exotic plants from their home and introduced ranges. We conducted a common garden experiment with an invasive plant Centaurea maculosa and a native plant Poa pratensis, in which a mixture of sand and vermiculite was used as a neutral medium, and contrasted the total biomass, competitive effects, and competitive responses of C. maculosa populations from Europe (home range) and North America (introduced range) under two different temperatures. The warming-induced inhibitory effects on the growth of C. maculosa alone were stronger in Europe than in North America. The competitive ability of C. maculosa plants from North America was greater than that of plants from Europe under the ambient condition whereas this competitive ability followed the opposite direction under the warming condition, suggesting that warming may enable European C. maculosa to be more invasive. Across two continents, warming treatment increased the competitive advantage instead of the growth advantage of C. maculosa, suggesting that climate warming may facilitate C. maculosa invasions through altering competitive outcomes between C. maculosa and its neighbors. Additionally, the growth response of C. maculosa to warming could predict its ability to avoid being suppressed by its neighbors

    Growth and Competitive Effects of Centaurea stoebe Populations in Response to Simulated Nitrogen Deposition

    Get PDF
    Increased resource availability can promote invasion by exotic plants, raising concerns over the potential effects of global increases in the deposition of nitrogen (N). It is poorly understood why increased N favors exotics over natives. Fast growth may be a general trait of good invaders and these species may have exceptional abilities to increase growth rates in response to N deposition. Additionally, invaders commonly displace locals, and thus may have inherently greater competitive abilities. The mean growth response of Centaurea stoebe to two N levels was significantly greater than that of North American (NA) species. Growth responses to N did not vary among C. stoebe populations or NA species. Without supplemental N, NA species were better competitors than C. stoebe, and C. stoebe populations varied in competitive effects. The competitive effects of C. stoebe populations increased with N whereas the competitive effects of NA species decreased, eliminating the overall competitive advantage demonstrated by NA species in soil without N added. These results suggest that simulated N deposition may enhance C. stoebe invasion through increasing its growth and relative competitive advantage, and also indicate the possibility of local adaptation in competitive effects across the introduced range of an invader

    Processing of spatial-frequency altered faces in schizophrenia: Effects of illness phase and duration

    Get PDF
    Low spatial frequency (SF) processing has been shown to be impaired in people with schizophrenia, but it is not clear how this varies with clinical state or illness chronicity. We compared schizophrenia patients (SCZ, n534), first episode psychosis patients (FEP, n522), and healthy controls (CON, n535) on a gender/facial discrimination task. Images were either unaltered (broadband spatial frequency, BSF), or had high or low SF information removed (LSF and HSF conditions, respectively). The task was performed at hospital admission and discharge for patients, and at corresponding time points for controls. Groups were matched on visual acuity. At admission, compared to their BSF performance, each group was significantly worse with low SF stimuli, and most impaired with high SF stimuli. The level of impairment at each SF did not depend on group. At discharge, the SCZ group performed more poorly in the LSF condition than the other groups, and showed the greatest degree of performance decline collapsed over HSF and LSF conditions, although the latter finding was not significant when controlling for visual acuity. Performance did not change significantly over time for any group. HSF processing was strongly related to visual acuity at both time points for all groups. We conclude the following: 1) SF processing abilities in schizophrenia are relatively stable across clinical state; 2) face processing abnormalities in SCZ are not secondary to problems processing specific SFs, but are due to other known difficulties constructing visual representations from degraded information; and 3) the relationship between HSF processing and visual acuity, along with known SCZ- and medication-related acuity reductions, and the elimination of a SCZ-related impairment after controlling for visual acuity in this study, all raise the possibility that some prior findings of impaired perception in SCZ may be secondary to acuity reductions

    Data from: Population genomic analyses reveal a history of range expansion and trait evolution across the native and invaded range of yellow starthistle (Centaurea solstitialis)

    No full text
    Identifying sources of genetic variation and reconstructing invasion routes for non-native introduced species is central to understanding the circumstances under which they may evolve increased invasiveness. In this study, we used genome-wide single nucleotide polymorphisms to study the colonization history of Centaurea solstitialis in its native range in Eurasia and invasions into the Americas. We leveraged this information to pinpoint key evolutionary shifts in plant size, a focal trait associated with invasiveness in this species. Our analyses revealed clear population genomic structure of potential source populations in Eurasia, including deep differentiation of a lineage found in the southern Apennine and Balkan Peninsulas and divergence among populations in Asia, eastern Europe, and western Europe. We found strongest support for an evolutionary scenario in which western European populations were derived from an ancient admixture event between populations from eastern Europe and Asia, and subsequently served as the main genetic 'bridgehead' for introductions to the Americas. Introductions to California appear to be from a single source region, and multiple, independent introductions of divergent genotypes likely occurred into the Pacific Northwest. Plant size has evolved significantly at three points during range expansion, including a large size increase in the lineage responsible for the aggressive invasion of California's interior. These results reveal a long history of colonization, admixture, and trait evolution in C. solstitialis, and suggest routes for improving evidence-based management decisions for one of the most ecologically and economically damaging invasive species in the western United States
    corecore