245 research outputs found
Thyroid function in Danish greenhouse workers
BACKGROUND: From animal studies it is known that currently used pesticides can disturb thyroid function. METHODS: In the present study we investigated the thyroid function in 122 Danish greenhouse workers, to evaluate if greenhouse workers classified as highly exposed to pesticides experiences altered thyroid levels compared to greenhouse workers with lower exposure. Serum samples from the greenhouse workers were sampled both in the spring and the fall to evaluate if differences in pesticide use between seasons resulted in altered thyroid hormone levels. RESULTS: We found a moderate reduction of free thyroxine (FT4) (10β16%) among the persons working in greenhouses with a high spraying load both in samples collected in the spring and the fall, but none of the other measured thyroid hormones differed significantly between exposure groups in the cross-sectional comparisons. However, in longitudinal analysis of the individual thyroid hormone level between the spring and the fall, more pronounced differences where found with on average 32% higher thyroid stimulating hormone (TSH) level in the spring compared to the fall and at the same time a 5β9% lower total triiodthyroxin (TT3), free triiodthyroxine (FT3) and FT4. The difference between seasons was not consistently more pronounced in the group classified as high exposure compared to the low exposure groups. CONCLUSION: The present study indicates that pesticide exposure among Danish greenhouse workers results in only minor disturbances of thyroid hormone levels
The Role of Hydrogeography and Climate in the Landscape Epidemiology of West Nile Virus in New York State from 2000 to 2010
The epidemiology and ecology of West Nile virus (WNV) have not yet been completely described. In particular, the specific roles of climate and water in the landscape in the occurrence of human WNV cases remain unknown. This study used Poisson regression to describe the relationships between WNV cases and temperature, precipitation, and the hydrogeography of the landscape in New York State from 2000 to 2010. Fully adjusted models showed that hydrogeographic area was significantly inversely associated with WNV cases (incidence rate ratio (IRR)β=β0.99; 95% C.I.β=β0.98β0.997, pβ=β0.04), such that each one square kilometer increase in hydrogeographic area was associated with a 1% decrease in WNV incidence. This association was independent of both temperature, which was also associated with WNV incidence (IRRβ=β2.06; 95% C.I.β=β1.84β2.31, p<0.001), and precipitation, which was not (IRRβ=β1.0; 95% C.I.β=β0.99β1.01, pβ=β0.16). While the results are only suggestive due to the county-level aggregated data, these findings do identify a potentially important surveillance signal in the landscape epidemiology of WNV infection
Dry weather induces outbreaks of human West Nile virus infections
<p>Abstract</p> <p>Background</p> <p>Since its first occurrence in the New York City area during 1999, West Nile virus (WNV) has spread rapidly across North America and has become a major public health concern in North America. By 2002, WNV was reported in 40 states and the District of Columbia with 4,156 human and 14,539 equine cases of infection. Mississippi had the highest human incidence rate of WNV during the 2002 epidemic in the United States. Epidemics of WNV can impose enormous impacts on local economies. Therefore, it is advantageous to predict human WNV risks for cost-effective controls of the disease and optimal allocations of limited resources. Understanding relationships between precipitation and WNV transmission is crucial for predicting the risk of the human WNV disease outbreaks under predicted global climate change scenarios.</p> <p>Methods</p> <p>We analyzed data on the human WNV incidences in the 82 counties of Mississippi in 2002, using standard morbidity ratio (SMR) and Bayesian hierarchical models, to determine relationships between precipitation and human WNV risks. We also entertained spatial autocorrelations of human WNV risks with conditional autocorrelative (CAR) models, implemented in WinBUGS 1.4.3.</p> <p>Results</p> <p>We observed an inverse relationship between county-level human WNV incidence risk and total annual rainfall during the previous year. Parameters representing spatial heterogeneity in the risk of human exposure to WNV improved model fit. Annual precipitation of the previous year was a predictor of spatial variation of WNV risk.</p> <p>Conclusions</p> <p>Our results have broad implications for risk assessment of WNV and forecasting WNV outbreaks. Assessing risk of vector-born infectious diseases will require understanding of complex ecological relationships. Based on the climatologically characteristic drought occurrence in the past and on climate model predictions for climate change and potentially greater drought occurrence in the future, we suggest that the frequency and relative risk of WNV outbreaks could increase.</p
Binary and Millisecond Pulsars at the New Millennium
We review the properties and applications of binary and millisecond pulsars.
Our knowledge of these exciting objects has greatly increased in recent years,
mainly due to successful surveys which have brought the known pulsar population
to over 1300. There are now 56 binary and millisecond pulsars in the Galactic
disk and a further 47 in globular clusters. This review is concerned primarily
with the results and spin-offs from these surveys which are of particular
interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living
Reviews in Relativity (http://www.livingreviews.org
Ethical and policy issues in cluster randomized trials: rationale and design of a mixed methods research study
<p>Abstract</p> <p>Background</p> <p>Cluster randomized trials are an increasingly important methodological tool in health research. In cluster randomized trials, intact social units or groups of individuals, such as medical practices, schools, or entire communities β rather than individual themselves β are randomly allocated to intervention or control conditions, while outcomes are then observed on individual cluster members. The substantial methodological differences between cluster randomized trials and conventional randomized trials pose serious challenges to the current conceptual framework for research ethics. The ethical implications of randomizing groups rather than individuals are not addressed in current research ethics guidelines, nor have they even been thoroughly explored. The main objectives of this research are to: (1) identify ethical issues arising in cluster trials and learn how they are currently being addressed; (2) understand how ethics reviews of cluster trials are carried out in different countries (Canada, the USA and the UK); (3) elicit the views and experiences of trial participants and cluster representatives; (4) develop well-grounded guidelines for the ethical conduct and review of cluster trials by conducting an extensive ethical analysis and organizing a consensus process; (5) disseminate the guidelines to researchers, research ethics boards (REBs), journal editors, and research funders.</p> <p>Methods</p> <p>We will use a mixed-methods (qualitative and quantitative) approach incorporating both empirical and conceptual work. Empirical work will include a systematic review of a random sample of published trials, a survey and in-depth interviews with trialists, a survey of REBs, and in-depth interviews and focus group discussions with trial participants and gatekeepers. The empirical work will inform the concurrent ethical analysis which will lead to a guidance document laying out principles, policy options, and rationale for proposed guidelines. An Expert Panel of researchers, ethicists, health lawyers, consumer advocates, REB members, and representatives from low-middle income countries will be appointed. A consensus conference will be convened and draft guidelines will be generated by the Panel; an e-consultation phase will then be launched to invite comments from the broader community of researchers, policy-makers, and the public before a final set of guidelines is generated by the Panel and widely disseminated by the research team.</p
Increased Avian Diversity Is Associated with Lower Incidence of Human West Nile Infection: Observation of the Dilution Effect
Recent infectious disease models illustrate a suite of mechanisms that can result in lower incidence of disease in areas of higher disease host diversityβthe βdilution effectβ. These models are particularly applicable to human zoonoses, which are infectious diseases of wildlife that spill over into human populations. As many recent emerging infectious diseases are zoonoses, the mechanisms that underlie the βdilution effectβ are potentially widely applicable and could contribute greatly to our understanding of a suite of diseases. The dilution effect has largely been observed in the context of Lyme disease and the predictions of the underlying models have rarely been examined for other infectious diseases on a broad geographic scale. Here, we explored whether the dilution effect can be observed in the relationship between the incidence of human West Nile virus (WNV) infection and bird (host) diversity in the eastern US. We constructed a novel geospatial contrasts analysis that compares the small differences in avian diversity of neighboring US counties (where one county reported human cases of WNV and the other reported no cases) with associated between-county differences in human disease. We also controlled for confounding factors of climate, regional variation in mosquito vector type, urbanization, and human socioeconomic factors that are all likely to affect human disease incidence. We found there is lower incidence of human WNV in eastern US counties that have greater avian (viral host) diversity. This pattern exists when examining diversity-disease relationships both before WNV reached the US (in 1998) and once the epidemic was underway (in 2002). The robust disease-diversity relationships confirm that the dilution effect can be observed in another emerging infectious disease and illustrate an important ecosystem service provided by biodiversity, further supporting the growing view that protecting biodiversity should be considered in public health and safety plans
A Land-Use Perspective for Birdstrike Risk Assessment: The Attraction Risk Index
Collisions between aircraft and birds, birdstrikes, pose a serious threat to aviation safety. The occurrence of these events is influenced by land-uses in the surroundings of airports. Airports located in the same region might have different trends for birdstrike risk, due to differences in the surrounding habitats. Here we developed a quantitative tool that assesses the risk of birdstrike based on the habitats within a 13-km buffer from the airport. For this purpose, we developed Generalized Linear Models (GLMs) with binomial distribution to estimate the contribution of habitats to wildlife use of the study area, depending on season. These GLMs predictions were combined to the flight altitude of birds within the 13-km buffer, the airport traffic pattern and the severity indices associated with impacts. Our approach was developed at Venice Marco Polo International airport (VCE), located in northeast Italy and then tested at Treviso Antonio Canova International airport (TSF), which is 20 km inland. Results from the two airports revealed that both the surrounding habitats and the season had a significant influence to the pattern of risk. With regard to VCE, agricultural fields, wetlands and urban areas contributed most to the presence of birds in the study area. Furthermore, the key role of distance of land-uses from the airport on the probability of presence of birds was highlighted. The reliability of developed risk index was demonstrated since at VCE it was significantly correlated with bird strike rate. This study emphasizes the importance of the territory near airports and the wildlife use of its habitats, as factors in need of consideration for birdstrike risk assessment procedures. Information on the contribution of habitats in attracting birds, depending on season, can be used by airport managers and local authorities to plan specific interventions in the study area in order to lower the risk.Collisions between aircraft and birds, birdstrikes, pose a serious threat to aviation safety. The occurrence of these events is influenced by land-uses in the surroundings of airports. Airports located in the same region might have different trends for birdstrike risk, due to differences in the surrounding habitats. Here we developed a quantitative tool that assesses the risk of birdstrike based on the habitats within a 13-km buffer from the airport. For this purpose, we developed Generalized Linear Models (GLMs) with binomial distribution to estimate the contribution of habitats to wildlife use of the study area, depending on season. These GLMs predictions were combined to the flight altitude of birds within the 13-km buffer, the airport traffic pattern and the severity indices associated with impacts. Our approach was developed at Venice Marco Polo International airport (VCE), located in northeast Italy and then tested at Treviso Antonio Canova International airport (TSF), which is 20 km inland. Results from the two airports revealed that both the surrounding habitats and the season had a significant influence to the pattern of risk. With regard to VCE, agricultural fields, wetlands and urban areas contributed most to the presence of birds in the study area. Furthermore, the key role of distance of land-uses from the airport on the probability of presence of birds was highlighted. The reliability of developed risk index was demonstrated since at VCE it was significantly correlated with bird strike rate. This study emphasizes the importance of the territory near airports and the wildlife use of its habitats, as factors in need of consideration for birdstrike risk assessment procedures. Information on the contribution of habitats in attracting birds, depending on season, can be used by airport managers and local authorities to plan specific interventions in the study area in order to lower the risk
Fine-Scale Variation in Vector Host Use and Force of Infection Drive Localized Patterns of West Nile Virus Transmission
The influence of host diversity on multi-host pathogen transmission and persistence can be confounded by the large number of species and biological interactions that can characterize many transmission systems. For vector-borne pathogens, the composition of host communities has been hypothesized to affect transmission; however, the specific characteristics of host communities that affect transmission remain largely unknown. We tested the hypothesis that vector host use and force of infection (i.e., the summed number of infectious mosquitoes resulting from feeding upon each vertebrate host within a community of hosts), and not simply host diversity or richness, determine local infection rates of West Nile virus (WNV) in mosquito vectors. In suburban Chicago, Illinois, USA, we estimated community force of infection for West Nile virus using data on Culex pipiens mosquito host selection and WNV vertebrate reservoir competence for each host species in multiple residential and semi-natural study sites. We found host community force of infection interacted with avian diversity to influence WNV infection in Culex mosquitoes across the study area. Two avian species, the American robin (Turdus migratorius) and the house sparrow (Passer domesticus), produced 95.8% of the infectious Cx. pipiens mosquitoes and showed a significant positive association with WNV infection in Culex spp. mosquitoes. Therefore, indices of community structure, such as species diversity or richness, may not be reliable indicators of transmission risk at fine spatial scales in vector-borne disease systems. Rather, robust assessment of local transmission risk should incorporate heterogeneity in vector host feeding and variation in vertebrate reservoir competence at the spatial scale of vector-host interaction
Experimental Evidence for Reduced Rodent Diversity Causing Increased Hantavirus Prevalence
Emerging and re-emerging infectious diseases have become a major global environmental problem with important public health, economic, and political consequences. The etiologic agents of most emerging infectious diseases are zoonotic, and anthropogenic environmental changes that affect wildlife communities are increasingly implicated in disease emergence and spread. Although increased disease incidence has been correlated with biodiversity loss for several zoonoses, experimental tests in these systems are lacking. We manipulated small-mammal biodiversity by removing non-reservoir species in replicated field plots in Panama, where zoonotic hantaviruses are endemic. Both infection prevalence of hantaviruses in wild reservoir (rodent) populations and reservoir population density increased where small-mammal species diversity was reduced. Regardless of other variables that affect the prevalence of directly transmitted infections in natural communities, high biodiversity is important in reducing transmission of zoonotic pathogens among wildlife hosts. Our results have wide applications in both conservation biology and infectious disease management
Modelling Transmission of Vector-Borne Pathogens Shows Complex Dynamics When Vector Feeding Sites Are Limited
The relationship between species richness and the prevalence of vector-borne disease has been widely studied with a range of outcomes. Increasing the number of host species for a pathogen may decrease infection prevalence (dilution effect), increase it (amplification), or have no effect. We derive a general model, and a specific implementation, which show that when the number of vector feeding sites on each host is limiting, the effects on pathogen dynamics of host population size are more complex than previously thought. The model examines vector-borne disease in the presence of different host species that are either competent or incompetent (i.e. that cannot transmit the pathogen to vectors) as reservoirs for the pathogen. With a single host species present, the basic reproduction ratio R0 is a non-monotonic function of the population size of host individuals (H), i.e. a value exists that maximises R0. Surprisingly, if a reduction in host population size may actually increase R0. Extending this model to a two-host species system, incompetent individuals from the second host species can alter the value of which may reverse the effect on pathogen prevalence of host population reduction. We argue that when vector-feeding sites on hosts are limiting, the net effect of increasing host diversity might not be correctly predicted using simple frequency-dependent epidemiological models
- β¦