237 research outputs found

    Radiation-cooled Dew Water Condensers Studied by Computational Fluid Dynamic (CFD)

    Get PDF
    Harvesting condensed atmospheric vapour as dew water can be an alternative or complementary potable water resource in specific arid or insular areas. Such radiation-cooled condensing devices use already existing flat surfaces (roofs) or innovative structures with more complex shapes to enhance the dew yield. The Computational Fluid Dynamic - CFD - software PHOENICS has been programmed and applied to such radiation cooled condensers. For this purpose, the sky radiation is previously integrated and averaged for each structure. The radiative balance is then included in the CFD simulation tool to compare the efficiency of the different structures under various meteorological parameters, for complex or simple shapes and at various scales. It has been used to precise different structures before construction. (1) a 7.32 m^2 funnel shape was studied; a 30 degree tilted angle (60 degree cone half-angle) was computed to be the best compromise for funnel cooling. Compared to a 1 m^2 flat condenser, the cooling efficiency was expected to be improved by 40%. Seventeen months measurements in outdoor tests presented a 138 % increased dew yield as compared to the 1 m^2 flat condenser. (2) The simulation results for 5 various condenser shapes were also compared with experimental measurement on corresponding pilots systems: 0.16 m^2 flat planar condenser, 1 m^2 and 30 degree tilted planar condenser, 30 m^2 and 30 degree tilted planar condenser, 255 m^2 multi ridges, a preliminary construction of a large scale dew plant being implemented in the Kutch area (Gujarat, India)

    Dew frequency across the US from a network of in situ radiometers

    Get PDF
    Dew formation is a ubiquitous process, but its importance to energy budgets or ecosystem health is difficult to constrain. This uncertainty arises largely because of a lack of continuous quantitative measurements on dew across ecosystems with varying climate states and surface characteristics. This study analyzes dew frequency from the National Ecological Observatory Network (NEON), which includes 11 grasslands and 19 forest sites from 2015 to 2017. Dew formation is determined at 30&thinsp;min intervals using in situ radiometric surface temperatures from multiple heights within the canopy along with meteorological measurements. Dew frequency in the grasslands ranges from 15 % to 95 % of the nights with a strong linear dependency on the nighttime relative humidity (RH), while dew frequency in the forests is less frequent and more homogeneous (25±14 %, 1 standard deviation – SD). Dew mostly forms at the top of the canopy for the grasslands due to more effective radiative cooling and within the canopy for the forests because of higher within the canopy RH. The high temporal resolution of our data showed that dew duration reaches maximum values (∼6–15&thinsp;h) for RH∼96 % and for a wind speed of ∼0.5ms-1, independent of the ecosystem type. While dew duration can be inferred from the observations, dew yield needs to be estimated based on the Monin–Obukhov similarity theory. We find yields of 0.14±0.12mmnight-1 (1 SD from nine grasslands) similar to previous studies, and dew yield and duration are related by a quadratic relationship. The latent heat flux released by dew formation is estimated to be non-negligible (∼10Wm-2), associated with a Bowen ratio of ∼3. The radiometers used here provide canopy-averaged surface temperatures, which may underestimate dew frequency because of localized cold points in the canopy that fall below the dew point. A statistical model is used to test this effect and shows that dew frequency can increase by an additional ∼5 % for both ecosystems by considering a reasonable distribution around the mean canopy temperature. The mean dew duration is almost unaffected by this sensitivity analysis. In situ radiometric surface temperatures provide a continuous, non-invasive and robust tool for studying dew frequency and duration on a fine temporal scale.</p

    Capillary wave turbulence on a spherical fluid surface in low gravity

    Get PDF
    We report the observation of capillary wave turbulence on the surface of a fluid layer in a low-gravity environment. In such conditions, the fluid covers all the internal surface of the spherical container which is submitted to random forcing. The surface wave amplitude displays power-law spectrum over two decades in frequency, corresponding to wavelength from mmmm to a few cmcm. This spectrum is found in roughly good agreement with wave turbulence theory. Such a large scale observation without gravity waves has never been reached during ground experiments. When the forcing is periodic, two-dimensional spherical patterns are observed on the fluid surface such as subharmonic stripes or hexagons with wavelength satisfying the capillary wave dispersion relation

    Casimir Forces at Tricritical Points: Theory and Possible Experiments

    Full text link
    Using field-theoretical methods and exploiting conformal invariance, we study Casimir forces at tricritical points exerted by long-range fluctuations of the order-parameter field. Special attention is paid to the situation where the symmetry is broken by the boundary conditions (extraordinary transition). Besides the parallel-plate configuration, we also discuss the geometries of two separate spheres and a single sphere near a planar wall, which may serve as a model for colloidal particles immersed in a fluid. In the concrete case of ternary mixtures a quantitative comparison with critical Casimir and van der Waals forces shows that, especially with symmetry-breaking boundaries, the tricritical Casimir force is considerably stronger than the critical one and dominates also the competing van der Waals force.Comment: 18 pages, Latex, 3 postscript figures, uses Elsevier style file

    Fog and Dew Collection Projects in Croatia

    Get PDF
    The present paper discusses the fog and dew water collection in Croatia. Zavizan, the highest meteorological station in Croatia(1594m) is chosen for collecting of fog water with a standard fog collector (SFC). The highest daily collection rate was 27.8 L / m2. The highest daily collection rate in days without rain was 19.1 l/m2. Dew is also a noticeable source of water, especially during the drier summer season. Dew condensers in Croatia have been installed on the Adriatic coast (Zadar) and islands Vis and Bisevo. We report and discuss the data collected since 2003. In the small Bisevo island, a special roof has been designed to improve the formation and collection of dew on a house. Data from April 2005 will be presented and discussed.Comment: accessible sur http://balwois.mpl.ird.fr/balwois/administration/full_paper/ffp-587.pd

    Analytic Solution of Emden-Fowler Equation and Critical Adsorption in Spherical Geometry

    Full text link
    In the framework of mean-field theory the equation for the order-parameter profile in a spherically-symmetric geometry at the bulk critical point reduces to an Emden-Fowler problem. We obtain analytic solutions for the surface universality class of extraordinary transitions in d=4d=4 for a spherical shell, which may serve as a starting point for a pertubative calculation. It is demonstrated that the solution correctly reproduces the Fisher-de Gennes effect in the limit of the parallel-plate geometry.Comment: (to be published in Z. Phys. B), 7 pages, 1 figure, uuencoded postscript file, 8-9

    Critical Casimir effect in classical binary liquid mixtures

    Full text link
    If a fluctuating medium is confined, the ensuing perturbation of its fluctuation spectrum generates Casimir-like effective forces acting on its confining surfaces. Near a continuous phase transition of such a medium the corresponding order parameter fluctuations occur on all length scales and therefore close to the critical point this effect acquires a universal character, i.e., to a large extent it is independent of the microscopic details of the actual system. Accordingly it can be calculated theoretically by studying suitable representative model systems. We report on the direct measurement of critical Casimir forces by total internal reflection microscopy (TIRM), with femto-Newton resolution. The corresponding potentials are determined for individual colloidal particles floating above a substrate under the action of the critical thermal noise in the solvent medium, constituted by a binary liquid mixture of water and 2,6-lutidine near its lower consolute point. Depending on the relative adsorption preferences of the colloid and substrate surfaces with respect to the two components of the binary liquid mixture, we observe that, upon approaching the critical point of the solvent, attractive or repulsive forces emerge and supersede those prevailing away from it. Based on the knowledge of the critical Casimir forces acting in film geometries within the Ising universality class and with equal or opposing boundary conditions, we provide the corresponding theoretical predictions for the sphere-planar wall geometry of the experiment. The experimental data for the effective potential can be interpreted consistently in terms of these predictions and a remarkable quantitative agreement is observed.Comment: 30 pages, 17 figure

    Casimir Forces between Spherical Particles in a Critical Fluid and Conformal Invariance

    Full text link
    Mesoscopic particles immersed in a critical fluid experience long-range Casimir forces due to critical fluctuations. Using field theoretical methods, we investigate the Casimir interaction between two spherical particles and between a single particle and a planar boundary of the fluid. We exploit the conformal symmetry at the critical point to map both cases onto a highly symmetric geometry where the fluid is bounded by two concentric spheres with radii R_- and R_+. In this geometry the singular part of the free energy F only depends upon the ratio R_-/R_+, and the stress tensor, which we use to calculate F, has a particularly simple form. Different boundary conditions (surface universality classes) are considered, which either break or preserve the order-parameter symmetry. We also consider profiles of thermodynamic densities in the presence of two spheres. Explicit results are presented for an ordinary critical point to leading order in epsilon=4-d and, in the case of preserved symmetry, for the Gaussian model in arbitrary spatial dimension d. Fundamental short-distance properties, such as profile behavior near a surface or the behavior if a sphere has a `small' radius, are discussed and verified. The relevance for colloidal solutions is pointed out.Comment: 37 pages, 2 postscript figures, REVTEX 3.0, published in Phys. Rev. B 51, 13717 (1995

    Effects of Turbulent Mixing on the Critical Behavior

    Full text link
    Effects of strongly anisotropic turbulent mixing on the critical behavior are studied by means of the renormalization group. Two models are considered: the equilibrium model A, which describes purely relaxational dynamics of a nonconserved scalar order parameter, and the Gribov model, which describes the nonequilibrium phase transition between the absorbing and fluctuating states in a reaction-diffusion system. The velocity is modelled by the d-dimensional generalization of the random shear flow introduced by Avellaneda and Majda within the context of passive scalar advection. Existence of new nonequilibrium types of critical regimes (universality classes) is established.Comment: Talk given in the International Bogolyubov Conference "Problems of Theoretical and Mathematical Physics" (Moscow-Dubna, 21-27 August 2009
    corecore