75 research outputs found

    Investigating an active rockslide by long-range laser scanner: alignment strategy and displacements identification

    Get PDF
    Landslides are considered one of the major natural hazards in mountain regions. Nowadays landslides monitoring has become a central issue for Authorities to be able to anticipate hazards. For this reason, several examples exist about landslides monitoring; they may be installed in different configurations depending on purposes and economic resources.The heart of this research is to detect an efficient methodology for the reliable acquisition and interpretation of Terrestrial Laser Scanning (TLS) data: the final purpose is a proposal for a methodology which is based on TLS technology for identifying displacements and extracting geomorphological changes. The approach is clearly based on a multi-temporal analysis which is computed on several repetitions of TLS surveys performed on the area of interest. To achieve best results and optimize the processing strategy, different methods about point clouds alignment have been tested, together with algorithms both for filtering and post- processing. The final aim is also to provide a sort of guidelines about a suitable way for planning and properly carrying out TLS surveys.The case study is the Col Piagneto landslide, located in the North Apennines (Reggio Emilia, Italy) on the right flank of Biola torrent. The large scale composite landslide area is made both by a wide rock slide sector and a more limited earth slide sector. An integrated monitoring system is installed since 2009 and comprises both point-based technologies (extensometers, total station and global positioning system), as well as area-based ones (airborne laser scanner, long-range TLS and ground-based radar). This choice combines the advantages of both approaches.The research focuses on TLS surveys for trying to detect displacements which might be considered responsible for instability. By sequentially analyzing TLS surfaces, displacement maps have been obtained for the rockslide area. Confirmation can be achieved by comparing results with movements of reflectors located on the slope and continuously measured by total station. Such validation strengthens the idea that TLS may be successfully used for analyzing instability

    Terrestrial Laser Scanning for Preserving Cultural Heritage: Analysis of Geometric Anomalies for Ancient Structures

    Get PDF
    Identifying the overhang, progressive changes of inclination, differential movements of the structure and detailing the study of structural elements are just some examples of the many fundamental information for structural engineers. Those data are required to study and analyze the behavior of a structure with the purpose to assess the stability . Laser scanning appears to be the best technology to provide an effective solution to those requirements. Surveying by means of a terrestrial laser scanner (TLS), allows to detect a huge number of information with relatively short time and high accuracy. Those data, then, do not necessarily need to be used to reconstruct the three dimensional surface model. Just analyzing the point clouds, interesting information along with useful products can be obtained in order to draw some considerations about the investigated structure. This research aims to suggest a new philosophy for using TLS in a diagnostic perspective in order to study structures along with their actual dimensions, their stability and so on. This new approach, characterized by a well- advanced vision, is really different from the traditional one because of the engineering point of view with respect to the usual application of TLS. Traditionally, indeed, laser scanning is chosen for artistic and architectural studies and the resulting three-dimensional model represents what often is of concern.The research focuses on the Cathedral of Modena, one of the most important pieces of Romanesque culture in Europe (UNESCO World Heritage List since 1997). The overall motivation of this research is to preserve the cultural heritage we are responsible for, as long as spectators. Thus, the final purpose is to illustrate the methodology to compute anomalies in structural geometry by means of TLS in order to provide an accurate description of the structure that is particularly useful for structural engineers, architects and art historians. Both outdoor as well as indoor TLS surveys were performed. The geometry of the structure was properly described by analyzing point clouds; specific measurements were focused on constituent elements with the aim of detecting anomalies of the geometric configuration. Geometric anomalies might be read as the result of deformations occurred in the past or as future deformations due to an abnormal geometric configuration. Investigations about the identified anomalies will be presented together with differential movements obtained by high precision leveling focused on a network of benchmarks that were installed along the outside perimeter. The integration of independent techniques allows to check for consistency of results

    Multi-sensors integrated system for landslide monitoring: critical issues in system setup and data management

    Get PDF
    This paper discusses critical issues related to the reliability of topographic monitoring systems such as ATS (Automated Total Stations), GNSS (Global Navigation Satellite System) and Ground Based InSAR focusing the attention on controlling the stability of networks infrastructure, which have influence on data correction procedures but are often taken for granted, and on integrating results in GIS (Geographic Information System), under a common reference framework and with respect to open-access ancillary data. The novelty of the paper lies in the demonstration of the efficiency obtained by a proper implementation of the system. Discussion makes reference to an active landslide by using ATS, GNSS and Ground Based InSAR in continuous and periodic mod

    Atmospheric corrections for topographic monitoring systems in landslides.

    Get PDF
    SUMMARYNew automated “long range” total stations are actually available for monitoring landslides, dams, structures etc. The use of total station is consolidate within some hundred meters of distance and with a supervisor. But the long range (up to 3 km) measurements are not still completely investigated in operating condition. When the accuracy and the precision required are important, seems to be necessary to investigate the atmosphere influence on distance measurements. The research deals with the study of a landslide topographic monitoring system: the Collagna Landslide (Reggio Emilia, Italy) monitoring system. It consists of an automated long range total station acquiring about 36 prisms ,every 4 hours, since 2009. The idea was to test how atmospheric corrections could improve the measurements precision and accuracy to exploit the system capabilities. Some tests on the total station EDM (Electronic Distance Measuring) system are presented in operating conditions. Particularly attention was paid to the long distances dependence on atmospheric conditions (temperature, pressure and relative humidity). Two kinds of corrections were applied, that of the instrument and one of the literature. Some differences were found on atmospheric corrections calculated with the two different methods. But it seems that atmospheric corrections can really improve the final result accuracy

    Terrestrial Laser Scanner for Surveying and Monitoring Middle Age Towers

    Get PDF
    We had the opportunity to make surveying of some middle age towers located in Emilia Romagna region (Italy): Ghirlandina tower (Modena), \u201cDella Sagra\u201d tower (Carpi, Modena) , Asinelli tower (Bologna). Those towers are very interesting by architectural and artistic point of view; Ghirlandina and Asinelli are Cultural Heritage site of UNESCO.Terrestrial laser scanner (TLS) instrument has been used with an accuracy at 1 cm level in order to obtain good restitution in absolute coordinates, even with a precise topographic determination of GCP (Ground Control Points). Tridimensional restitution of the towers is here presented; we would like to point out the attention on the way that we use the TLS for enhancing the geometrical characteristics, particularly the height of the towers and the axis development that were determined through the trajectory of barycenter of transversal sections.The determination of actual geometry is essential for the study of the buildings and it is a first fundamental step for monitoring the towers

    Recent approaches in geodesy and geomatics for structures monitoring

    Get PDF
    Monitoring the time history of structures and infrastructures has always been an important area of application of geodetic and geomatic methods. Here we shall concentrate on the item of monitoring ancient buildings because, beyond its intrinsic interest, it provides a good illustration of some of the most recent monitoring techniques. Identifying the overhang, progressive changes of inclination, differential movements of the structure and detailing the study of structural elements are just some examples of the many fundamental and necessary information for structural engineers. Those data are required to study and analyze the behavior of a structure with the purpose to assess the stability . Looking at the several methods offered by Geomatics, laser scanning appears to be the best technology to provide an effective 3D solution to those requirements. Surveying by means of a terrestrial laser scanner, allows to detect a huge number of 3D information with high accuracy in a relatively short time and high accuracy. Just analyzing the point clouds, interesting information along with useful products can be obtained in order to draw some considerations about the investigated structure. This research aims at suggesting a new philosophy for using 3D models in a diagnostic perspective in order to study structures along with their actual dimensions, their stability and so on. Traditionally, indeed, laser scanning is chosen for artistic and architectural studies and the resulting three-dimensional model represents what often is of concern. Furthermore, the use of more classic techniques, such as total station and digital leveling, and LST is fundamental as an integrated approach for the monitoring of ancient buildings. The integration of different techniques allow a redundancy of observation and the possibility to verify the results obtained form independent techniques as is shown throughout some experimental applications

    3D reconstruction of an underwater archaelogical site: comparison between low cost cameras

    Get PDF
    The 3D reconstruction with a metric content of a submerged area, where objects and structures of archaeological interest are found, could play an important role in the research and study activities and even in the digitization of the cultural heritage. The reconstruction of 3D object, of interest for archaeologists, constitutes a starting point in the classification and description of object in digital format and for successive fruition by user after delivering through several media. The starting point is a metric evaluation of the site obtained with photogrammetric surveying and appropriate 3D restitution. The authors have been applying the underwater photogrammetric technique since several years using underwater digital cameras and, in this paper, digital low cost cameras (off-the-shelf). Results of tests made on submerged objects with three cameras are presented: (c) Canon Power Shot G12, (c) Intova Sport HD e (c) GoPro HERO 2. The experimentation had the goal to evaluate the precision in self-calibration procedures, essential for multimedia underwater photogrammetry, and to analyze the quality of 3D restitution. Precisions obtained in the calibration and orientation procedures was assessed by using three cameras, and an homogeneous set control points. Data were processed with (c) Agisoft Photoscan. Successively, 3D models were created and the comparison of the models derived from the use of different cameras was performed. Different potentialities of the used cameras are reported in the discussion section. The 3D restitution of objects and structures was integrated with sea bottom floor morphology in order to achieve a comprehensive description of the site. A possible methodology of survey and representation of submerged objects is therefore illustrated, considering an automatic and a semi-automatic approach

    The development and application of an optimization tool in industrial design

    Get PDF
    AbstractDesigners are identified, in industry 4.0, as the professional figures that have to design well performing new object. In order to do this, it is necessary to take into account a series of properties called design objectives. Often the structural problem of new design is underestimated or even not considered. This can be a real problem because this objective is in competitive and in contrast with other design objectives. So, this can bring to substantial change in a design in the final phase and sometimes to the complete change. In this paper is presented an optimization workflow that adopt a Multi Objective Optimization engine so called "Octopus" and Karamba3D, that is a Finite Elements (FE) plug-in, typically used in structural simulations, these extensions run in a software: Grassopper3D, that is a parametric design tool. The workflow allows designers to explore a large range of solutions and at the same time permits to filter and sort the optimized models in order to analyze the tradeoff of the resultant solution space, both qualitatively and quantitatively. In such way designers can obtain easily a lot of information of the generate design and identify potential solution for immediate use or for further optimization. In this paper is analyzed a design problem of an ergonomic chair in order to provide the efficiency of the workflow. The design criteria and the structural problem for this type of design object are identified as the main optimization objectives in order to iteratively improve the design solutions
    • …
    corecore