314 research outputs found
Quantum correlations and coherence in a driven two-qubit system under non-Markovian dissipative effect
Highlights: • Qubit systems including classical driving field. • Time-dependent effect on the comportments of the quantum quantifiers in quantum technologies. • Markovian and non-Markovian dynamics. • Quantum coherence dynamics. • Dynamics of classical and quantum correlations • Effect of pure and mixed states. Abstract: By considering an exactly solvable model for a driven two non-interacting qubits, each coupled to a bosonic environment with zero temperature, under the non-Markovian dissipative process, we study the variation of coherence and correlations in terms of different physical parameters. We show the influence of the external classical driving field as well as the initial quantum states. Moreover, we highlight the relationship between the coherence, single-qubit population, and correlations according to the physical parameters of the whole system. We reveal that the preservation and enhancement of coherence and correlations may occur by adjusting the strength of the classical driving field, initial states, and non-Markovian effects
Generalized Heisenberg algebra coherent states for Power-law potentials
Coherent states for power-law potentials are constructed using generalized
Heisenberg algabras. Klauder's minimal set of conditions required to obtain
coherent states are satisfied. The statistical properties of these states are
investigated through the evaluation of the Mandel's parameter. It is shown that
these coherent states are useful for describing the states of real and ideal
lasers.Comment: 13 pages, 2 figure
Entanglement and photon statistics of two dipole–dipole coupled superconducting qubits with Kerr-like nonlinearities
Abstract The engineering of Kerr and time-dependent coupling interactions is of great attention for treating quantum information in quantum systems and for investigating the collective behavior of large numbers of interacting particles in a cavity-qubit network. In this manuscript, we investigate the time evolution of the entanglement and some nonclassical properties of two superconducting qubits interacting with a single-mode field in the presence of a Kerr-like medium and dipole–dipole interaction without and with time-dependent coupling effect. We show that a slight alteration in the interaction, detuning, and Kerr parameters might cause a change in the entanglement of subsystem states during the evolution. By taking into account the influence of the different physical parameters, we show the statistical distributions produced in the photons of the single mode field through the calculation of the Mandel's parameter. Finally, we find that the time-dependent Mandel's parameter not only provide the statistical properties of the field, but also include the information of quantum entanglement for the subsystem states
Quantum correlations between each qubit in a two-atom system and the environment in terms of interatomic distance
The quantum correlations between a qubit and its environment are described
quantitatively in terms of interatomic distance. Specifically, considering a
realistic system of two two-level atoms and taking into account the
dipole-dipole interaction and collective damping, the quantum entanglement and
quantum discord are investigated, during the dissipative process, as a function
of the interatomic distance. For atoms that are initially maximally entangled,
it turns out that there is a critical distance where each atom is maximally
quantum correlated with its environment. Counterintuitively, the approach of
the two atoms can maximize the entanglement between each one and the
environment and, even at the same distance, minimize the loss of entanglement
between the pair.Comment: 5 pages, 3 figure
Emission spectrum and geometric phase in deformed Jaynes-Cummings model
Abstract The emission spectrum of a qubit (two-level atom) system that interacts with a field in the framework of parity deformations is investigated in this paper. The model consists of a qubit coupled to a single-mode field within the parity deformed Jaynes-Cummings model (PDJCM) based on the λ -analog of the quantum harmonic oscillator algebra. We numerically evaluate the atomic emission spectrum (AES), by considering the influence of the deformed parameter and half-band-width of the spectrometer. Moreover, the dependence of the spectrum peaks on the detuning parameter is discussed. Finally, we study the variation of the geometric phase of the whole system state modelled by the PDJCM in terms of the main physical parameters
Effet de l’oxygène sur les radiations optiques émises lors de la pulvérisation de l’aluminium par un faisceau d’ions
La présence de l’oxygène au voisinage d’une surface métallique lors d’unbombardement ionique, provoque une décroissance du rendement totalde pulvérisation mais elle modifie considérablement les proportions desdiverses espèces éjectées de cette surface. Dans ce travail, nous noussommes intéressés à l’effet de l’oxygène sur la lumière émise lors de lapulvérisation d’une surface d’aluminium par des ions Kr+ d’énergiecinétique de 5 keV. Le spectre de luminescence relevé à une pression de10-7 Torr est comparé à celui mesuré lorsque la cible est soumise à uneatmosphère d’oxygène. L’examen des intensités des raies spectralesmontre que toutes les raies Al I manifestent une dépendance positiveavec la pression en oxygène alors que des raies Al II manifestent unedépendance négative. Nous avons aussi enregistré que des raies Al IIIrestent insensibles à la présence de ce gaz. Ces observations sontcomparées avec les spectres de luminescences de l’alumine bombardéedans les mêmes conditions expérimentales. Les résultats obtenus sontinterprétés dans le cadre du modèle de transfert d’électrons entre lasurface et la particule éjectée. La validité du modèle suggère qu'en présence de l'oxygène, une structure est formée et dont le schéma debandes d'énergie est intermédiaire entre celui de l'aluminium et celui del'alumine.Mots-clés : pulvérisation, émission optique, aluminium, alumine, modèlede transfert d’électrons; analyse de surface, spectroscopie optique
Two-point phase correlations of a one-dimensional bosonic Josephson junction
We realize a one-dimensional Josephson junction using quantum degenerate Bose
gases in a tunable double well potential on an atom chip. Matter wave
interferometry gives direct access to the relative phase field, which reflects
the interplay of thermally driven fluctuations and phase locking due to
tunneling. The thermal equilibrium state is characterized by probing the full
statistical distribution function of the two-point phase correlation.
Comparison to a stochastic model allows to measure the coupling strength and
temperature and hence a full characterization of the system
- …