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A B S T R A C T

The emission spectrum of a qubit (two-level atom) system that interacts with a field in the framework of parity
deformations is investigated in this paper. The model consists of a qubit coupled to a single-mode field within the
parity deformed Jaynes-Cummings model (PDJCM) based on the λ-analog of the quantum harmonic oscillator
algebra. We numerically evaluate the atomic emission spectrum (AES), by considering the influence of the
deformed parameter and half-band-width of the spectrometer. Moreover, the dependence of the spectrum peaks
on the detuning parameter is discussed. Finally, we study the variation of the geometric phase of the whole
system state modelled by the PDJCM in terms of the main physical parameters.

Introduction

The JCM which has been utilized largely in quantum optics (QO)
prescribes the interaction between a 2-level atom with a single radia-
tion field. The application and solvability of this model has extensively
been discussed in detail [1,2]. This model identifies a set of several
phenomena in the quantum mechanics theory, such as, entanglement of
atom-field states [3], Rabi oscillations [4,5], revival and collapse phe-
nomena of the population inversion [5]. Especially, it carries out a
significant role in latest quantum information processing (QIP)
[6–10,18,11–17]. Moreover, JCM is one of the number of potential
schemes for generating the nonclassical states [19–22]. According to
the experiments of Rydberg atoms with high quality cavity, the dy-
namics of the JCM has predicted [23]. In view of the fact that the JCM
is considered as an optimal model in QO, its several expansions, as for
example, transition of 2 photons or multi photons, 2 or 3-cavity modes
for 3-level atom, intensity dependent coupling, and the Tavis-Cum-
mings model were examined [24,25]. By using the method of the al-
gebraic operator, the above mentioned models have studied [26]. At
the same time, the exact solvability of the JCM can be realized through
the supergroup theoretical method and the theory of super-algebras
[27]. Lately, the ordinary annihilation and creation operators of the
field in the JCM may be replaced by the deformed operators to describe,
so-called the deformed JCM [28]. Subsequently, the effect of Kerr

nonlinearity in the JCM has been considered in the context of the f-
oscillator formalism [29]. On the other hand, it is shown that the
generalized JCM can achieve through a set of shape-invariant bound
state problem [30].

ES is considered as one of the fundamental processes in QO, and its
effective control is essential for many potential applications in minia-
ture lasers, light emitting diodes, and solar cells to single-photon
sources for QIP. It is well known that there are two basic methods to
control the AES. One is to place atoms into suitable surroundings, as
various optical wave guides and cavities [31,32]. The other way is to
drive atoms with a coherent external field [33–37]. More particularly,
ES does not only depend on the structures of the energy levels for the
atom but also on the nature of embedded environment, precisely on
both the density of radiation-field states and on the electric field per
photon. In the high-Q cavity, the coupling strength between the atom
and the field can be modified, which leads to change the electric field
per photon. The AES light is simultaneously viewed as an intrinsic
property of materials with processes were uncontrollable. The con-
sideration of a cavity to control the coupling of the dipole-field system
and the photonic density, leads to design the spontaneous emission rate
of radiating dipoles [38]. Purcell’s idea had been intensely followed
with diverse cavities in theoretical and experimental studies [39,40],
and the enhancement [41] and the inhibition [42] of ES and the
quantum throbs of atomic populations [41] had been examined. The ES
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properties of large sets of atomic systems have studied based on the
quantum statistics [43]. In recent years, with the development of solid-
state QO applications, more and more attention has been paid to pho-
tonic crystals [44,45], which is a new kind of artificial optical material
with photonic band gaps.

A widespread knowledge of the essential description of the quantum
mechanics has been carried out after Berry’s inspiration of a geometric
characteristic involved with the dynamics of a system under unitary
evolutions [46–53]. Quantum evolutions of states with non-unitary,
noncyclic and nonadiabatic mechanisms have been widely introduced
[51,53]. Berry’s asserted that in the complex phase argument, the
quantum state retains the memory of its evolution, on which it relies on
the geometry of the path through which the quantum system describes.
The factor of the geometric phase (GP) was originated from the core of
quantum mechanics, which can be characterized by the Stokes theory
as an integral part of the path and may be modified to an integral part
of the surface and then it carries like a geometric region. The char-
acteristics of the GP are considered as a key to perform the execution of
fault-tolerant quantum (FTQ) computation. This provides the ad-
vantages of the inherent durability provided by the topological char-
acteristics of some typical quantum systems in order to build FTQ logic
gates. Lately, significant investigations have been considered to realize
the GP in various tasks QIP, such as in NMR experiments [54], ion traps
[55], atoms in cavity QED [56], Josephson quantum dots [57], junction
devices [58], etc.

In this manuscript, the main aim is to explore and examine the ES of
a 2-level atom coupled to a λ-deformed field in the context of the JCM.
We will show whether the characteristics and structures of the ES could
be affected by the quantum features of the deformed field and other
parameters of the model. More precisely, we will explore the de-
pendance of the peaks corresponding to the AES on the deformed
parameter, detuning parameter and half-band-width. Finally, we will
study the GP of the whole system state modelled by the parity deformed
JCM in terms of the main parameters of the model.

The paper is structured as follows. In Section “Model and theoretical
framework” we give the important steps of the JCM model in the
context of parity deformations and its dynamics of a 2-level atom
system with a the single mode field. In Section “Physical quantities”, we
prescribes the concept of the AST and GP. In Section “Results and dis-
cussion” we show and discuss the results. Finally, discussions and
conclusions are given in Section “Conclusion”.

Model and theoretical framework

To describe the parity extension of the standard JCM, we introduce
the parity deformed Heisenberg algebra (PDHA) which is considered as
applications of para-statistics and para-fields [59–63]. This quantum
algebra is described by the generators +I A A R{ , , , } with the commuta-
tion relations [64]

= + = =+ +A A λR R A R A[ , ] 1 2 , { , } { , } 0. (1)

Here R is the parity operator and the λ is a real deformed parameter.
The operator R obeys the properties

= = =+ −R R R R I. ,1 2 (2)

and acts on a Fock state as

= −R n n( 1) .n (3)

The N-number operator, such that =N n n n , is different from +A A
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The generators A and +A are given in terms of the usual annihilation
and creation operators a and +a as follows [65]:
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The PDJCM, parity extension of the standard JCM is introduced as [64]
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where HS is the standard Jaynes-Cummings model defined as
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In the →λ 0 limit, the parity model reduces to the standard JCM. The
operators −σ ( +σ ) and σz denoting the lowering (rising) and inversion
operators for the qubit states, ± , that satisfy the commutations

+ −σ σ[ , ] and =± ±σ σ σ[ , ] 2z . a ( +a ) indicates the annihilation (creation)
operator for the mode field with the commutation relation =+a a[ , ] 1.
The term g presents the coupling strength between the 2-level atom and
the field mode with the external mode frequency ωF and the atomic
transition frequency ωA. λ characterizes the strength of the field and the
coupling between the atom and the external classical field is de-
termined by the constant ≡ε r Rext

λg
x

2 , where εext indicates the ampli-
tude of the external field and r refers to the qubit dipole matrix element.
At the exact-resonance situation ( =ω ωF A) with the absence of coupling
( =g 0), it is worth mentioning that the hamiltonian operator HP is
super-symmetric. This exactly solvable model considers the inverse
quadratic potential, −λ λ

x
1
2

( 1)
2 , that is firstly introduced by Post [66] in

the context of the one-dimensional particles in the presence of the in-
teraction of the pair forces.

The eigenvalues and eigenvectors of the Hamiltonian operators Hp
are given by

⎜ ⎟= ⎛
⎝

+ + ⎞
⎠

±±E n λ ω2 1 Ω
2

n λ
F

n λ
,

,

(9)

= + ± + −± ± ∓E c n c n2 , 2 1, ,n (10)

where = + + +g n λΩ Δ 4 (1 2 2 )n λ, 2 2 is the generalized Rabi fre-
quency and = −ω ωΔ A F is the detuning parameter.

The atom-field state, ψ t( ) , at subsequent times can be determined
by using the Schrödinger equation

∂
∂

=i
ψ t

t
H ψ tℏ

( )
( ) .P

(11)

The state ψ t( ) can be extended as a superposition of the Fock states
+n2 , and + −n2 1, :

∑= + + + −
=

∞

+ + −ψ t C t n C t n( ) [ ( ) 2 , ( ) 2 1, ],
n

n n
0

2 , 2 1,
(12)

where the coefficients +C t( )n2 , and + −C t( )n2 1, can be easily determined
by substituting the state ψ t( ) into Eq. 11 and replaced the initial
conditions. Here, we consider the qubit system is initially defined in an
upper state, + and the λ-deformed field is described by the coherent
states [64]
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where x( )λI indicates the modified Bessel function first kind.

Physical quantities

The ES is introduced as a 2-time integration of the correlation
function over the time t. For obtaining the correlation function,

= + −f t t ψ σ t σ t ψ( , ) (0) ( ) ( ) (0)1 2 1 2 , of the 2-level atom, we reformulate
the operator of the atomic raising as = + − ⊗+σ I(0) a F at time

=t 0, where = ∑I n nF n . Subscripts F and a denoting the single-
mode field and the 2-level atom system, respectively. The operator of
the atomic raising +σ t( ) at subsequent times can be determined by using
the Heisenberg equation

∂
∂

=+
+i σ t

t
σ t H( ) [ ( ), ].P (14)

Since −σ t( ) is the complex conjugate of +σ t( ), one can simply find the
atomic operators +σ t( )1 and −σ t( )2 at different times. Consequently, one
may obtain the atomic correlation function with respect to the choice
the initial state. Here, we numerically evaluate the ES of the 2-level
atom coupled to the purity field and interpret the influence of the main
parameters of the model on the ES. The time-dependent spectrum of a
qubit system coupled to single-mode field cavity is defined by [67]

∫ ∫=
×

∞ ∞ − − − − + −

+ −

S ω t dt e e
ψ σ t σ t ψ dt

( , , Λ) 2Λ
(0) ( ) ( ) (0) ,

iω t t iω t t
0 1 0

(Λ )( ) (Λ )( )

1 2 2

1 2

(15)

where ω defines the frequency of the probe field, Λ indicates the half-
band-width of the spectrometer, t is the measured time, and ψ (0)
denotes of the atom-field state at =t 0.

For noncyclic evolutions, the quantum systems are described by
final wave functions that are different and not be gotten from the initial
wave functions through a multiplication with a complex factor.
Assuming that the initial state 〉ψ| (0) varies with time to the state 〉ψ t| ( ) ,
then we define the noncyclic phase that verifies

〈 〉 =ψ ψ t iγ(0) ( ) Γexp( ), (16)

where Γ is a real scalar. This noncyclic phase includes the cyclic GP
because the latter can be considered a special case for =Γ 1. In general,
determining the phase between the two varying states during the evo-
lution is not self-evident. Pancharatnam stands the phase obtained
during an the evolution of a state from 〉ψ| (0) to 〉ψ t| ( ) as

=t iγΦ ( ) arg[Γexp( )]G .

Results and discussion

To show the effect of various physical parameters related to the
whole system state on the AES, we plot S ω( ) with different values of the
deformed parameter λ, half-band-width Λ, and detuning Δ. Figs. 1 and
2 are for various values of λ and Λ in the resonance =Δ 0 and off-
resonance =Δ 0.75, respectively. The 2-level atom system will have a
considerable probability for emitting photon in the presence of a fre-
quency smaller than ωF . Generally, we can see two peaks for the atomic
AES that are symmetric with the same height in the resonance case
(Fig. 1). The symmetric structure of the ES is demolished by the de-
tuning parameter Δ, providing a shift in the spacing of two adjacent
peaks in the off-resonance regime, one is high and the other one is low
in the off-resonance case (Fig. 2). On the other hand, when the para-
meter λ decreases, the two peaks increase and the spectrums move
away from each other. This feature can be explained as the increasing
parameter λ leads to reduce the frequency shift of the cavity field and
the atom-field frequency is not detuned from the resonance. Therefore,
the distance separated the neighboring peaks decreases. In addition, the

value the two adjacent peaks becomes large as Λ augments with the
increase in the height of the peaks in the ES. When the parameter Λ
attains really a very large value, the spectrum will be appear with two
sharp peaks.

The results of the GP when the field is initially starts from a standard
state ( =λ 0) and deformed state ( ≠λ 0), are displayed versus the di-
mensionless time gt in Fig. 3(a) and (b) for both cases of resonance and
off-resonance regimes, respectively. We can see from the plots, the GP
exhibits a periodic behavior and reveals of the well-known phenom-
enon of collapse and revival of the GP. The increase of the parameters λ
leads to appear a time shift in the evolution of the GP and reduce the
duration of the collapse. On the other hand, the presence of the

Fig. 1. Variation of the AES as a function of − −ν g ωF for various values of the
parameters λ and Λ in the resonance case =Δ 0 with =ξ 30 . Fig. 1(a) is for

=Λ 0.01 and Fig. 1(b) is for =Λ 0.1. The red line is for =λ 0, blue line is for
=λ 10 and black line is for =λ 30. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 2. Variation of the AES as a function of − −ν g ωF for various values of the
parameters λ and Λ in the off-resonance case =Δ 0.75 with =ξ 30 . Fig. 2(a)
is for =Λ 0.01 and Fig. 2(b) is for =Λ 0.1. The red line is for =λ 0, blue line is
for =λ 10 and black line is for =λ 30. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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detuning, the structures of the periodic oscillations of the GP dis-
appeared with positive and negative values of the GP. For large times,
these structures become much more complex. From these results. The
deformed and detuning parameters can help to realize and stabilize the
system during the evolution.

Conclusion

In summary, we have numerically examined the ES of a qubit (two-
level atom system) coupled to deformed bosonic field in the framework
of the PDJCM. We have shown how an considerable choice of the main
parameters allowing to control the AES. We have seen that the ES of the
qubit system reveals interesting quantum features depending on the
main physical parameters. As a result, the spectrum structure presents
symmetric peaks with a height and separation distance that are de-
pending on the value of the deformed parameter λ in the resonance
case. This symmetric of the atomic spectrum is destroyed in the off-
resonance case. Finally, we have examined the dependence of the GP on
the main parameters of the PDJCM. We have found that the GP is very
sensitive to the deformed and detuning parameters. It is shown that the
GP exhibits a periodic oscillations, that depends on the parameter λ,
with reveals and collapse phenomena during the time evolution in the
resonance case. On the other hand, the structures of the periodic os-
cillations of the GP disappeared with positive and negative values of the
GP in the off-resonance case. From these results. the deformed and
detuning parameters can help to realize and stabilize the system during
the evolution.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgement

This research was funded by the Deanship of Scientific Research at

Princess Nourah bint Abdulrahman University through the Fast-track
Research Funding Program.

References

[1] Jaynes E, Cummings F. Proc IEEE 1963;51:89.
[2] Narozhny NB, Sanchez-Mondragon JJ, Eberly JH. Phys Rev A 1981;23:236.
[3] Phoenix SJD, Knight PL. Ann Phys 1988;186:381.
[4] Agarwal GS. Phys Rev Lett 1984;53:1732.
[5] Cummings FW. Phys Rev 1965;140(A 1051).
[6] Chang DE, Vuletic V, Lukin MD. Nat Photon 2014;8:685.
[7] Zhang Y, et al. Sci Rep 2015;5:11510.
[8] Pedernales JS, et al. Sci Rep 2015;5:15472.
[9] Zhou L, Sheng YB. Phys Rev A 2015;92:042314.
[10] Forn-Diaz P, Romero G, Harmans CJPM, Solano E, Mooij JE. Sci Rep 2016;6:26720.
[11] Berrada K. Phys Rev A 2013;88:035806.
[12] Berrada K, Abdel-Khalek S. Physica E 2011;44:628.
[13] Abdel-Khalek S, Berrada K, Eleuch H, Abel-Aty M. Opt Quantum Electron

2011;42:887.
[14] Berrada K, Abdel-Khalek S, Ooi CHR. Quantum Inf Process 2013;12:2177.
[15] Berrada K. Ann Phys 2014;340:60.
[16] Berrada K. Solid State Commun 2018;273:34.
[17] Berrada K. J Opt Soc Am B 2015;32:571.
[18] Song, et al. Sci Rep 2016;6:28744.
[19] Short R, Mandel L. Phys Rev Lett 1983;51:384.
[20] Lo Franco R, Compagno G, Messina A, Napoli A. Phys Rev A 2005;72:053806.
[21] Lo Franco R, Compagno G, Messina A, Napoli A. Phys Rev A 2006;74:045803.
[22] Lo Franco R, Compagno G, Messina A, Napoli A. Phys Rev A 2007;76:011804(R).
[23] Goy P, Raimond JM, Gross M, Haroche S. Phys Rev Lett 1983;50:1903.
[24] Singh S. Phys Rev A 1982;25:3206.
[25] Tavis M, Cummings FW. Phys Rev 1968;170:379.
[26] Sukumar CV, Buck B. J Phys A 1984;17:885.
[27] Buzano C, Rasetti MG, Rastello ML. Phys Rev Lett 1989;62:137.
[28] Chaichian M, Ellinas D, Kulish P. Phys Rev Lett 1990;65:980.
[29] de los Santos-Sanchez O, Recamier J. J Phys B: At Mol Opt Phys 2012;45:015502.
[30] Aleixo ANF, Balantenkin AB, Candido Ribeiro MA. J Phys A: Math Gen

2000;33:3173.
[31] Purcell EM. Phys Rev 1946;69:681.
[32] Kleppner D. Phys Rev Lett 1981;47:233–6.
[33] Javanainen J. Europhys Lett 1992;17:407.
[34] Zhu SY, Scully MO. Phys Rev Lett 1996;76:388–91.
[35] Zhu SY, Chen H, Huang H. Phys Rev Lett 1997;79:205–8.
[36] Paspalakis E, Knight PL. Phys Rev Lett 1998;81:293–6.
[37] Jiang XQ, Zhang B, Lu ZW, Sun XD. Phys Rev A 2011;83:053823.
[38] Purcell EM. Phys Rev 1946;69:681.
[39] Milonni PW, Knight PL. Opt Commun 1973;9:119.
[40] Worthing PT, Amos RM, Barnes WL. Phys Rev A 1999;59:865.
[41] Goy P, Raimond JM, Gross M, Haroche S. Phys Rev Lett 1983;50:1903.
[42] Kleppner D. Phys Rev Lett 1981;47:233.
[43] Agarwal GS. Quantum Statistical Theories of Spontaneous Emission and Their

Relation to Other Approaches. Springer; 1995.
[44] Yablonovitch E. Phys Rev Lett 1987;58:2059–62.
[45] John S. Phys Rev Lett 1987;58:2486–9.
[46] Berry MV. Proc R Soc Lond A 1984;329:45.
[47] Pancharatnam S. Proc Indian Acad Sci A 1956;44:247.
[48] Wilczek F, Zee A. Phys Rev Lett 1984;52:2111.
[49] Simon B. Phys Rev Lett 1983;51:2167.
[50] Anandan J, Stodolsky L. Phys Rev D 1987;35:2597.
[51] Aharonov Y, Anandan J. Phys Rev Lett 1987;58:1593.
[52] Anandan J, Aharonov Y. Phys Rev D 1988;38:1863.
[53] Samuel J, Bhandari R. Phys Rev Lett 1988;60:2339.
[54] Jones JA, Vedral V, Ekert A, Castagnoli G. Nature (London) 2000;403:869.
[55] Duan L-M, Cirac JI, Zoller P. Science 2001;292:1695.
[56] Recati A, Calarco T, Zanardi P, Cirac JI, Zoller P. Phys Rev A 2002;66:032309.
[57] Yin S, Tong MD. Phys Rev A 2009;79:044303.
[58] Falci G, Fazio R, Palma GM, Siewert J, Vedral V. Nature 2000;407:355.
[59] Chaichian M, Ellinas D, Kulish P. Phys Rev Lett 1990;65:980.
[60] Greenberg OW, Messiah AML. Phys Rev B 1965;138:1155.
[61] Green HS. Phys Rev 1953;90:270.
[62] Tavis M, Cummings FW. Phys Rev 1968;170:379.
[63] Buzano C, Rasetti MG, Rastello ML. Phys Rev Lett 1989;62:137.
[64] Dehghani A, Mojaveri B, Shirin S, Amiri Faseghandis S. Scientific Rep

2016;6:38069.
[65] Yang LM. Phys Rev 1951;84:788.
[66] Post HR. Many-particles systems: II. Proc Phys Soc (London) A 1956;69:936.
[67] Eberly JH, Wodkiewicz K. J Opt Soc Am 1977;67:1252.

Fig. 3. Variation of the GP as a function of gt for various values of the para-
meter λ with =ξ 30 . Fig. 3(a) is for =Δ 0 and Fig. 3(b) is for =Δ 0.75. The
red line is for =λ 0, blue line is for =λ 10 and black line is for =λ 30. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

A.S. Altowyan, et al. Results in Physics 16 (2020) 102924

4

http://refhub.elsevier.com/S2211-3797(19)33088-8/h0005
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0010
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0015
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0020
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0025
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0030
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0035
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0040
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0045
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0050
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0055
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0060
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0065
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0065
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0070
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0075
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0080
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0085
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0090
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0095
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0100
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0105
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0110
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0115
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0120
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0125
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0130
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0135
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0140
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0145
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0150
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0150
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0155
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0160
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0165
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0170
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0175
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0180
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0185
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0190
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0195
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0200
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0205
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0210
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0215
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0215
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0220
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0225
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0230
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0235
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0240
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0245
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0250
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0255
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0260
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0265
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0270
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0275
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0280
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0285
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0290
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0295
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0300
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0305
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0310
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0315
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0320
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0320
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0325
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0330
http://refhub.elsevier.com/S2211-3797(19)33088-8/h0335

	Emission spectrum and geometric phase in deformed Jaynes-Cummings model
	Introduction
	Model and theoretical framework
	Physical quantities
	Results and discussion
	Conclusion
	mk:H1_6
	Acknowledgement
	References




