11,342 research outputs found

    Extended Gas in Seyfert Galaxies: Near Infrared Observations of NGC 2110 and Circinus

    Get PDF
    We present results of near--IR long-slit spectroscopy in the J and K bands of the Seyfert 2 galaxies NGC 2110 and Circinus, investigating the gaseous distribution, excitation, reddening and kinematics. In NGC 2110, the emission line ratio [FeII]/Pa beta increases towards the nucleus (to ~ 7). The nuclear [Fe II]1.257 (microns) and Pa beta lines are broader (FWHM ~ 500 km/s) than the H2 (2.121) line (FWHM ~ 300 km/s). Both these results suggest that shocks, driven by the radio jet, are an important source of excitation of [Fe II]. The H2 excitation appears to be dominated by X-rays from the nucleus. In Circinus, both [FeII]/Pa beta and H2/Br gamma decrease from ~ 2 at 4 arcsec from the nucleus to nuclear values of ~ 0.6 and ~ 1, respectively, suggesting that the starburst dominates the nuclear excitation, while the AGN dominates the excitation further out (r > 2 arcsec). For both galaxies, the gaseous kinematics are consistent with circular rotation in the plane of the disk. Our rotation curves suggest that the nucleus (identified with the peak of the IR continuum) is displaced from the kinematic centre of the galaxies. This effect has been observed previously in NGC 2110 based on the kinematics of optical emission lines, but the displacement is smaller in the infrared, suggesting the effect is related to obscuration. The continuum J-K colours of the nuclear region indicate a red stellar population in NGC 2110 and a reddened young stellar population in Circinus. Right at the nucleus of both galaxies, the colours are redder, apparently a result of hot dust emission from the inner edge of a circumnuclear torus.Comment: 11 pages, 14 figures, accepted for publication in MNRA

    The issue of time in generally covariant theories and the Komar-Bergmann approach to observables in general relativity

    Get PDF
    Diffeomorphism-induced symmetry transformations and time evolution are distinct operations in generally covariant theories formulated in phase space. Time is not frozen. Diffeomorphism invariants are consequently not necessarily constants of the motion. Time-dependent invariants arise through the choice of an intrinsic time, or equivalently through the imposition of time-dependent gauge fixation conditions. One example of such a time-dependent gauge fixing is the Komar-Bergmann use of Weyl curvature scalars in general relativity. An analogous gauge fixing is also imposed for the relativistic free particle and the resulting complete set time-dependent invariants for this exactly solvable model are displayed. In contrast with the free particle case, we show that gauge invariants that are simultaneously constants of motion cannot exist in general relativity. They vary with intrinsic time

    Gemini/GMOS Transmission Spectral Survey: Complete Optical Transmission Spectrum of the hot Jupiter WASP-4b

    Full text link
    We present the complete optical transmission spectrum of the hot Jupiter WASP-4b from 440-940 nm at R ~ 400-1500 obtained with the Gemini Multi-Object Spectrometers (GMOS); this is the first result from a comparative exoplanetology survey program of close-in gas giants conducted with GMOS. WASP-4b has an equilibrium temperature of 1700 K and is favorable to study in transmission due to a large scale height (370 km). We derive the transmission spectrum of WASP-4b using 4 transits observed with the MOS technique. We demonstrate repeatable results across multiple epochs with GMOS, and derive a combined transmission spectrum at a precision about twice above photon noise, which is roughly equal to to one atmospheric scale height. The transmission spectrum is well fitted with a uniform opacity as a function of wavelength. The uniform opacity and absence of a Rayleigh slope from molecular hydrogen suggest that the atmosphere is dominated by clouds with condensate grain size of ~1 um. This result is consistent with previous observations of hot Jupiters since clouds have been seen in planets with similar equilibrium temperatures to WASP-4b. We describe a custom pipeline that we have written to reduce GMOS time-series data of exoplanet transits, and present a thorough analysis of the dominant noise sources in GMOS, which primarily consist of wavelength- and time- dependent displacements of the spectra on the detector, mainly due to a lack of atmospheric dispersion correction.Comment: 23 pages, 12 figures, accepted for publication in AJ, 2017 July

    Gravitational Chern-Simons and the adiabatic limit

    Full text link
    We compute the gravitational Chern-Simons term explicitly for an adiabatic family of metrics using standard methods in general relativity. We use the fact that our base three-manifold is a quasi-regular K-contact manifold heavily in this computation. Our key observation is that this geometric assumption corresponds exactly to a Kaluza-Klein Ansatz for the metric tensor on our three manifold, which allows us to translate our problem into the language of general relativity. Similar computations have been performed in a paper of Guralnik, Iorio, Jackiw and Pi (2003), although not in the adiabatic context.Comment: 17 page

    ARIA 2016 : Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle

    Get PDF
    European Innovation Partnership on Active and Healthy Ageing Reference Site MACVIA-France, EU Structural and Development Fund Languedoc-Roussillon, ARIA.Peer reviewedPublisher PD

    Reparameterization invariants for anisotropic Bianchi I cosmology with a massless scalar source

    Full text link
    Intrinsic time-dependent invariants are constructed for classical, flat, homogeneous, anisotropic cosmology with a massless scalar material source. Invariance under the time reparameterization-induced canonical symmetry group is displayed explicitly.Comment: 28 pages, to appear in General Relativity and Gravitation. Substantial revisions: added foundational overview section 2, chose new intrinsic time variable, worked with dimensionless variables, added appendix with comparison and criticism of other approache

    The Physical Role of Gravitational and Gauge Degrees of Freedom in General Relativity - II: Dirac versus Bergmann observables and the Objectivity of Space-Time

    Get PDF
    (abridged)The achievements of the present work include: a) A clarification of the multiple definition given by Bergmann of the concept of {\it (Bergmann) observable. This clarification leads to the proposal of a {\it main conjecture} asserting the existence of i) special Dirac's observables which are also Bergmann's observables, ii) gauge variables that are coordinate independent (namely they behave like the tetradic scalar fields of the Newman-Penrose formalism). b) The analysis of the so-called {\it Hole} phenomenology in strict connection with the Hamiltonian treatment of the initial value problem in metric gravity for the class of Christoudoulou -Klainermann space-times, in which the temporal evolution is ruled by the {\it weak} ADM energy. It is crucial the re-interpretation of {\it active} diffeomorphisms as {\it passive and metric-dependent} dynamical symmetries of Einstein's equations, a re-interpretation which enables to disclose their (nearly unknown) connection to gauge transformations on-shell; this is expounded in the first paper (gr-qc/0403081). The use of the Bergmann-Komar {\it intrinsic pseudo-coordinates} allows to construct a {\it physical atlas} of 4-coordinate systems for the 4-dimensional {\it mathematical} manifold, in terms of the highly non-local degrees of freedom of the gravitational field (its four independent {\it Dirac observables}), and to realize the {\it physical individuation} of the points of space-time as {\it point-events} as a gauge-fixing problem, also associating a non-commutative structure to each 4-coordinate system.Comment: 41 pages, Revtex

    Signals of R-parity violating supersymmetry in neutrino scattering at muon storage rings

    Get PDF
    Neutrino oscillation signals at muon storage rings can be faked by supersymmetric (SUSY) interactions in an R-parity violating scenario. We investigate the τ\tau-appearance signals for both long-baseline and near-site experiments, and conclude that the latter is of great use in distinguishing between oscillation and SUSY effects. On the other hand, SUSY can cause a manifold increase in the event rate for wrong-sign muons at a long-baseline setting, thereby providing us with signatures of new physics.Comment: 7 pages LaTeX, 4 ps figures, accepted for publication in Phys. Rev.

    Lagrangian approach to a symplectic formalism for singular systems

    Get PDF
    We develop a Lagrangian approach for constructing a symplectic structure for singular systems. It gives a simple and unified framework for understanding the origin of the pathologies that appear in the Dirac-Bergmann formalism, and offers a more general approach for a symplectic formalism, even when there is no Hamiltonian in a canonical sense. We can thus overcome the usual limitations of the canonical quantization, and perform an algebraically consistent quantization for a more general set of Lagrangian systems.Comment: 30 page

    Lepton number violating interactions and their effects on neutrino oscillation experiments

    Full text link
    Mixing between bosons that transform differently under the standard model gauge group, but identically under its unbroken subgroup, can induce interactions that violate the total lepton number. We discuss four-fermion operators that mediate lepton number violating neutrino interactions both in a model-independent framework and within supersymmetry (SUSY) without R-parity. The effective couplings of such operators are constrained by: i) the upper bounds on the relevant elementary couplings between the bosons and the fermions, ii) by the limit on universality violation in pion decays, iii) by the data on neutrinoless double beta decay and, iv) by loop-induced neutrino masses. We find that the present bounds imply that lepton number violating neutrino interactions are not relevant for the solar and atmospheric neutrino problems. Within SUSY without R-parity also the LSND anomaly cannot be explained by such interactions, but one cannot rule out an effect model-independently. Possible consequences for future terrestrial neutrino oscillation experiments and for neutrinos from a supernova are discussed.Comment: 28 pages, 2 figures, Late
    • 

    corecore