10,964 research outputs found
Supervised Land Use Inference from Mobility Patterns
This paper addresses the relationship between land use and mobility patterns. Since each particular zone directly feeds the global mobility once acting as origin of trips and others as destination, both roles are simultaneously used for predicting land uses. Specifically this investigation uses mobility data derived from mobile phones, a technology that emerges as a useful, quick data source on people's daily mobility, collected during two weeks over the urban area of Málaga (Spain). This allows exploring the relevance of integrating weekday-weekend trip information to better determine the category of land use. First, this work classifies patterns on trips originated and terminated in each zone into groups by means of a clustering approach. Based on identifiable relationships between activity and times when travel peaks appear, a preliminary categorization of uses is provided. Then, both grouping results are used as input variables in a K-nearest neighbors (KNN) classification model to determine the exact land use. The KNN method assumes that the category of an object must be similar to the category of the closest neighbors. After training the models, the findings reveal that this approach provides a precise land use categorization, yielding the best accuracy results for the major categories of land uses in the studied area. Moreover, as a result, the weekend data certainly contributes to finding more precise land uses as those obtained by just weekday data. In particular, the percentage of correctly predicted categories using both weekday and weekend is around 80%, while just weekday data reach 67%. The comparison with actual land uses also demonstrates that this approach is able to provide useful information, identifying zones with a specific clear dominant use (residential, industrial, and commercial), as well as multiactivity zones (mixed). This fact is especially useful in the context of urban environments where multiple activities coexist.Unión Europea Programa Operativo FEDER de AndalucÃa 2011–2015Ministerio de EconomÃa y Competitividad PTQ-13-0642
The Economics of Wind Power with Energy Storage
We develop a nonlinear mathematical optimization program for investigating the economic and environmental implications of wind penetration in electrical grids and evaluating how hydropower storage could be used to offset wind power intermittence. When wind power is added to an electrical grid consisting of thermal and hydropower plants, it increases system variability and results in a need for additional peak-load, gas-fired generators. Our empirical application using load data for Alberta’s electrical grid shows that 32% wind penetration (normalized to peak demand) results in a net cost increase of 12.50/MWh. Costs of reducing CO2 emissions are estimated to be 56 per t CO2 . When pumped hydro storage is introduced in the system or the capacity of the water reservoirs is enhanced, the hydropower facility could provide most of the peak load requirements obviating the need to build large peak-load gas generators.Renewable energy, carbon costs, hydropower storage, mathematical programming
2-Hyponormality on Unilateral Weighted Shifts
Given the concept of a normal operator, several weaker notions have been proposed in order to extend the properties of normal operators to a wider range of operators. One such notion is that of k-hyponormal operators. In this document, we focus our attention on the 2-hyponormality of weighted shift operators over a discrete Hilbert space. It will be shown that if a certain relation between the weights α = ( α0, α1,...) of a weighted shift Wα is satisfied, then the 2-hyponormality of Wα implies the hyponormality of Wαm for any m = 2, 3,...
A Monolithic Time Stretcher for Precision Time Recording
Identifying light mesons which contain only up/down quarks (pions) from those
containing a strange quark (kaons) over the typical meter length scales of a
particle physics detector requires instrumentation capable of measuring flight
times with a resolution on the order of 20ps. In the last few years a large
number of inexpensive, multi-channel Time-to-Digital Converter (TDC) chips have
become available. These devices typically have timing resolution performance in
the hundreds of ps regime. A technique is presented that is a monolithic
version of ``time stretcher'' solution adopted for the Belle Time-Of-Flight
system to address this gap between resolution need and intrinsic multi-hit TDC
performance.Comment: 9 pages, 15 figures, minor corrections made, to appear as JINST_008
Dwarf Galaxies and the Cosmic Web
We use a cosmological simulation of the formation of the Local Group of
Galaxies to identify a mechanism that enables the removal of baryons from
low-mass halos without appealing to feedback or reionization. As the Local
Group forms, matter bound to it develops a network of filaments and pancakes.
This moving web of gas and dark matter drifts and sweeps a large volume,
overtaking many halos in the process. The dark matter content of these halos is
unaffected but their gas can be efficiently removed by ram-pressure. The loss
of gas is especially pronounced in low-mass halos due to their lower binding
energy and has a dramatic effect on the star formation history of affected
systems. This "cosmic web stripping" may help to explain the scarcity of dwarf
galaxies compared with the numerous low-mass halos expected in \Lambda CDM and
the large diversity of star formation histories and morphologies characteristic
of faint galaxies. Although our results are based on a single high-resolution
simulation, it is likely that the hydrodynamical interaction of dwarf galaxies
with the cosmic web is a crucial ingredient so far missing from galaxy
formation models.Comment: Submitted to ApJL. 6 pages, 4 figures. A set of movies showing the
interaction between dwarf galaxies and the Cosmic Web can be found at mirror
1 http://www.astro.uvic.ca/~mario/dwarf-web/ or at mirror 2
http://www.iate.oac.uncor.edu/~alejandro/dwarf-web/ . Comments are welcome
A Free-Form Lensing Grid Solution for A1689 with New Mutiple Images
Hubble Space Telescope imaging of the galaxy cluster Abell 1689 has revealed
an exceptional number of strongly lensed multiply-imaged galaxies, including
high-redshift candidates. Previous studies have used this data to obtain the
most detailed dark matter reconstructions of any galaxy cluster to date,
resolving substructures ~25 kpc across. We examine Abell 1689 (hereafter,
A1689) non-parametrically, combining strongly lensed images and weak
distortions from wider field Subaru imaging, and we incorporate member galaxies
to improve the lens solution. Strongly lensed galaxies are often locally
affected by member galaxies, however, these perturbations cannot be recovered
in grid based reconstructions because the lensing information is too sparse to
resolve member galaxies. By adding luminosity-scaled member galaxy deflections
to our smooth grid we can derive meaningful solutions with sufficient accuracy
to permit the identification of our own strongly lensed images, so our model
becomes self consistent. We identify 11 new multiply lensed system candidates
and clarify previously ambiguous cases, in the deepest optical and NIR data to
date from Hubble and Subaru. Our improved spatial resolution brings up new
features not seen when the weak and strong lensing effects are used separately,
including clumps and filamentary dark matter around the main halo. Our
treatment means we can obtain an objective mass ratio between the cluster and
galaxy components, for examining the extent of tidal stripping of the luminous
member galaxies. We find a typical mass-to-light ratios of M/L_B = 21 inside
the r<1 arcminute region that drops to M/L_B = 17 inside the r<40 arcsecond
region. Our model independence means we can objectively evaluate the
competitiveness of stacking cluster lenses for defining the geometric
lensing-distance-redshift relation in a model independent way.Comment: 23 pages with 25 figures Replced with MNRAS submitted version. Some
figures have been corrected and minor text edit
Under the same sky with Amanar
Due to its technological, scientific and cultural dimensions, astronomy is a
unique discipline to help achieve the United Nations Sustainable Development
Goals. According to the United Nations High Commissioner for Refugees (UNHCR),
there are currently nearly 30 million refugees in the world. While there are
many (and very necessary) programmes supporting their basic needs, different
indicators suggest that the resolution to refugee and internal displacement
situations require not only humanitarian interventions, but also
development-led actions. One of these initiatives is Amanar: Under the Same
Sky, a project designed to support the Sahrawi refugee community by using
astronomy to enhance their resilience and engagement in the community, through
skill development and self-empowerment activities.Comment: 5 pages, 2 figures. Comment published on Nature Astronom
- …