1,183 research outputs found
Study of the Effect of Water Depth on Potential Flow Solution of the OC4 Semisubmersible Floating Offshore Wind Turbine
AbstractThis work aims at assessing the influence of water depth on the potential flow solution for a semisubersible floating offshore wind turbine. More specifically, the system developed for the Offshore Code Comparison Collaboration Continuation (OC4) of the Inter- national Energy Agency IEA was considered for this paper. This work has been inspired by previous studies concerning the effect of shallow water on Liquified Natural Gas Carriers (LNGC). The influence of water depth on the hydrodynamics of such systems is evident from measurements as well as from simulations, specifically when secondary effects in the wave and flow modelling are addressed. This scenario has motivated the comparative study for the Floating Wind Turbine herein reported, also taking into account second order hydrodynamics (Quadratic Transfer Functions, QTF) as well as low frequency contribution in the incoming wave, due to shallow water (Setdown effect). The simulations were conducted relying on the codes DIFFRAC and aNySIM, de- veloped at Maritime Research Institute of Netherlands (MARIN) and the results are presented for a range of water depth between the nominal value of 200 m and the extreme shallow water of 30 m
A large-scale wind turbine model installed on a floating structure:experimental validation of the numerical design
In the field of floating wind energy, large-scale wind turbine models deployed in natural environments represent a key link between small-scale laboratory tests and full-scale prototypes. While implying smaller cost, design and installation effort than a full-scale prototype, large-scale models are technologically very similar to prototypes, can be tested in natural sea and wind conditions, and reduce by a consistent amount the dimensional scaling issues arising in small-scale experiments. In this framework the presented work report the aerodynamic and control system assessment of a 1:15 model of the DTU 10 MW wind turbine installed on a multipurpose-platform model for fish farming and energy production. The model has operated for 6 months in a natural laboratory and has been exposed to fully natural and uncontrolled environmental conditions. Assessment is performed in terms of rotor thrust force and power controller parameters such as rotor speed, blade pitch and rotor power as a function of incoming wind speed
Adding aerodynamic damping: the wing design for the Third Bosphorus Bridge
This paper is about the design of wing profiles adequate for giving to the Third Bosphorus Brige an additional aerodynamic damping on both vertical bending as well as torsional modes. The additional damping estimate procedure is made through a simplified quasi steady approach. A CFD approach has been used for a preliminary design and optimization of the wing profile and its position over the wind screen at the upwind and downwind location
Assessing the impact of waves and platform dynamics on floating wind-turbine energy production
Waves have the potential to increase the power output of a floating wind turbine by forcing its rotor to move against the wind. Starting from this observation, we use four multi-physics models of increasing complexity to investigate the role of waves and platform movements in the energy conversion process of four floating wind turbines of 5–15 MW in the Mediterranean Sea. Progressively adding realism to our simulations, we show that large along-wind rotor movements are needed to increase the power output of a floating wind turbine; however, these are prevented by the current technology of spar and semi-submersible platforms. Wind turbulence is the main cause of power fluctuations for the four floating wind turbines we examined and is preponderant over the effect of platform motions due to waves. In a realistic met-ocean environment, the power curve of the floating wind turbines we studied is lower than that obtained with a fixed foundation, with reductions in the annual energy production of 1.5 %–2.5 %. The lower energy production is mainly ascribed to the platform mean tilt, which reduces the rotor's effective area.</p
Metformin and temozolomide, a synergic option to overcome resistance in glioblastoma multiforme models
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with poor survival. Cytoreduction in association with radiotherapy and temozolomide (TMZ) is the standard therapy, but response is heterogeneous and life expectancy is limited. The combined use of chemotherapeutic agents with drugs targeting cell metabolism is becoming an interesting therapeutic option for cancer treatment. Here, we found that metformin (MET) enhances TMZ effect on TMZ-sensitive cell line (U251) and overcomes TMZ-resistance in T98G GBM cell line. In particular, combined-treatment modulated apoptosis by increasing Bax/Bcl-2 ratio, and reduced Reactive Oxygen Species (ROS) production. We also observed that MET associated with TMZ was able to reduce the expression of glioma stem cells (GSC) marker CD90 particularly in T98G cells but not that of CD133. In vivo experiments showed that combined treatment with TMZ and MET significantly slowed down growth of TMZ-resistant tumors but did not affect overall survival of TMZ-sensitive tumor bearing mice. In conclusion, our results showed that metformin is able to enhance TMZ effect in TMZ-resistant cell line suggesting its potential use in TMZ refractory GBM patients. However, the lack of effect on a GBM malignancy marker like CD133 requires further evaluation since it might influence response duration
- …