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ABSTRACT 
 

This paper presents the results of the investigation on vortex-induced vibrations using a 1:50 

sectional aeroelastic model of the Third Bosporus Bridge deck. These tests are included in the 

complete project of the Third Bosporus Bridge (BB3) developed by M. Virlogeux and T-

Engineering International SA and they are part of a wide experimental campaign performed 

in the Politecnico di Milano wind tunnel, to investigate the aerodynamic behavior of the 

bridge. In particular this model has been design to study vortex shedding phenomena in 

multi-modal excitation conditions. It is actually able to reproduce correctly the response 

behavior of the first modes of the bridge, as usually does an aeroelastic model but with a 

large geometrical scale as usually does a sectional rigid model. The large model scale allows 

to reproduce the shape of the deck, barriers, and geometric details with accuracy, on the other 

hand the use of an aeroelastic deformable model allows to study the vortex induced response 

for different modes of vibration. The large model scale allowed also to use high wind 

velocities avoiding the typical problems found in the wind tunnel tests at low wind speeds. 

Many different configurations were studied to evaluate the sensitivity of the deck to the 

fittings. No vortex induced vibrations were observed in the tested operating conditions. In 

order to evaluate the potentialities of this innovative set up a test case was defined 

considering the deck in the presence of a train on it: the naked configuration with train 

showed very high oscillation amplitudes. 

 

                     
1
Dept. of Mechanichal Engineering, Politecnico di Milano, Via La Masa 1, 20156, Milano, Italy 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55151296?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

An innovative aeroelastic model of the Third Bosporus Bridge to 

study vortex induced vibrations  
 

 

G. Diana
1
 , T. Argentini

1
, M. Belloli

1
, S. Muggiasca

1
, L. Rosa

1
 

 

 

ABSTRACT 
 
 This paper presents the results of the investigation on vortex-induced vibrations using a 1:50 

sectional aeroelastic model of the Third Bosporus Bridge deck. These tests are included in the 

complete project of the Third Bosporus Bridge (BB3) developed by M. Virlogeux and T-

Engineering International SA and they are part of a wide experimental campaign performed in 

the Politecnico di Milano wind tunnel, to investigate the aerodynamic behavior of the bridge. 

In particular this model has been design to study vortex shedding phenomena in multi-modal 

excitation conditions. It is actually able to reproduce correctly the response behavior of the 

first modes of the bridge, as usually does an aeroelastic model but with a large geometrical 

scale as usually does a sectional rigid model. The large model scale allows to reproduce the 

shape of the deck, barriers, and geometric details with accuracy, on the other hand the use of 

an aeroelastic deformable model allows to study the vortex induced response for different 

modes of vibration. The large model scale allowed also to use high wind velocities avoiding 

the typical problems found in the wind tunnel tests at low wind speeds. Many different 

configurations were studied to evaluate the sensitivity of the deck to the fittings. No vortex 

induced vibrations were observed in the tested operating conditions. In order to evaluate the 

potentialities of this innovative set up a test case was defined considering the deck in the 

presence of a train on it: the naked configuration with train showed very high oscillation 

amplitudes. 

 

Introduction 

 

Nowadays longer and longer spans have been realized for suspension and cable stayed 

bridges designing slender and flexible structures. On the other hand this kind of structures 

showed an higher sensitivity to the wind excitation. In particular vibrations induced by vortex 

shedding phenomena can become relevant at moderate wind velocities as observed in 

different kind of flexible structure ([1],[2],[3],[4]). In order to avoid higher level of vibration, 

the aerodynamic design of a bridge deck has to be taken in strong consideration. Indeed, a 

correct definition of the deck shape is surely preferable than adding devices to control the 

phenomenon. In [5], the effect of guide vanes to mitigate vortex shedding is showed: this 

solution permits to solve the problem in an already built bridge but it requires more money 

and maintenance than to correctly projected in advance the deck from an aerodynamic point 

of view. An example of a correct shaping on a trapezoidal box girder bridge deck is shown in 

[6]. The interest in studying the phenomenon is finalized to control or eliminate the vibrations 

induced by vortex shedding: avoiding significant level of vibration it is important not only for 

the structure safety but also for the comfort and the safety sensation of the drivers on the 

bridge. In these studies a key role is played by the wind tunnel tests, that are finally become a 

standard tool in bridge design ([7],[8],[9],[10]).  

Vortex shedding phenomenon is usually studied in wind tunnel using sectional rigid 

suspended models. For these models all the sections are characterized by the same 

aerodynamic behavior that is the one observed in correspondence of the antinode of flexible 

structures. As observed studying flexible cylinders [11], the tests performed on sectional 
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models can be restrictive because they do not consider neither the effects related to the modal 

shape nor the effects due to the multimodal excitation, as an aeroelastic model could do. On 

the other hand, aeroelastic models are generally realized in small geometrical scales with low 

level of accuracy in reproducing the geometric details.  

The present paper describes a new aeroelastic model able to sum up the advantages of an 

aeroelastic model and the ones of a rigid sectional model. It has been realized in a large scale 

in order reproduce the shape of the deck, barriers, and geometric details with accuracy and, at 

the same time, its flexibility allowed to study the vortex induced response for different modes 

of vibration. The large model scale allowed also to use high wind velocities avoiding the 

typical problems found in the wind tunnel tests at low wind speeds. Moreover this particular 

set up may be very little damped, whereas with traditional full aeroelastic models it is 

difficult to obtain very low level of structural damping i.e. Scruton Number.  

The experimental tests on the model were performed in the Politecnico di Milano Wind 

Tunnel Boundary Layer test section. The new set up was used to reproduce the Third 

Bosporus Bridge (BB3) that is a trapezoidal box girder bridge deck with external road lanes 

and central rail lanes scaled 1:50 (see Figure 3). The dynamic response of the model, for 

different operating configurations, was studied considering also the effect of the presence of a 

train. In particular the configurations with train have been used as test case to investigate the 

potentiality of the new set up. 

 

Experimental set-up 

 

The experimental campaign was performed in the Boundary Layer test section of the 

Politecnico di Milano Wind Tunnel. The aeroelastic model was realized as an equivalent 

“spine” model of the deck section: a non-structural exterior skin reproduces the external 

correct  geometry of the deck while the stiffness characteristics are obtained using an internal 

steel tube with a circular section. The internal spine is fixed to each module as shown in 

Figure 1 taking care to separate the modules with a gap of 1 mm: a single module is 0.4 m 

long and is made by carbon fiber in order to be as stiff and light as possible. 

 
Figure 1. Sketch of one module without the top skin. 

 

The complete model was composed by 20 modules for a total length of 8 m, giving an aspect 

ratio equal to 6.9. The different tested configurations had required the use of windshields and 

guardrails, made in carbon fiber and glued on the modules.  

Figure 2 shows the complete model placed in the wind tunnel test section. The spine of the 

sectional model was fixed, in correspondence of its ends, at two rigid frames, 1.5 m far from 

the ground (see Figure 3). The model was placed on the turntable, allowing the change of the 

exposition angle β very easily without change any set-up, see Figure 2 (right). Figure 4 shows 

the complete model in the wind tunnel.  



 
Figure 2. (left) Test set-up. Cross wind configuration, β=0°; (right) Test set-up. Top view 

 
Figure 3 Detail of the model in the wind tunnel, attack angle α=-3deg 

 

In order to sustain the model, two catenaries with three hangers each were used. This system 

was designed avoiding to change frequency and damping of the torsional modes.  

 
Figure 4 The complete model in the wind tunnel test section 

 

The deck was studied in three different operating configurations:  

 NAKED (Figure 5 (a)),  

 2WS i.e. two wind screens (Figure 5 (b))  

 2WS + WING i.e. two wind screens and wings on the top (Figure 5 (c)). 



 
Figure 5 Operating configurations: (a) NAKED, (b) 2WS, (c) 2WS + WING 

 

The bridge in the naked configuration is not provided with wind screens, but just with guard-

rails. The guard-rails are present in all the configurations. In the configuration "2WS" the 

wind screens for the road lanes are installed on the bridge. In the configuration named 

"2WS+WING", the wind screens for the road are installed together with the wings. 

The same operating conditions were considered with a train model placed in the rail lane (see 

Figure 6): this group of configurations was considered as a test case to investigate the 

potentiality of the set up in vortex shedding analysis. 

 
Figure 6 2WS+WING configuration with train 

 

The model was instrumented through accelerometers placed along the deck to define its 

dynamic response (Figure 7): the number and the positions of the accelerometers were chosen 

in order to correctly reproduce the first modes of the bridge.  

 
Figure 7 Sketch of the accelerometers arrangement on the deck 

 
 



Model characteristics 

The aeroelastic model was designed to simulate the first three torsional modes of the 

structure. In particular the model was tuned in order to obtained those frequencies in a range 

easily excitable by the wind velocities simulated in the wind tunnel (up to 15 m/s).  

Table 1 shows the modal frequencies and nondimensional damping factors obtained.  

It is possible to note that the frequencies are quite high for an aeroelastic model so not so low 

wind velocities could excite it: this is important in order to be sure that the energy imparted 

by the wind could be considered enough high as in the real conditions. On the other hand the 

damping factors are enough low to lead to Scruton Number lower or comparable with the full 

scale. The Scruton Number is calculated for the flexural modes as: 
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and for the torsional modes as: 
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where mL is the linear mass of the section (mL=14.2 kg/m), J is the linear moment of inertia 

(J=1.6 kgm), ρ is the air density and B is the deck chord (B=1.16 m). The Scruton number 

obtained is lower than 0.16 for the flexural modes and lower than 0.014 for the torsional 

modes. These values are comparable with the ones expected for the real bridge. That means 

that the dynamic response can be considered representative of the expected dynamic response 

for the real bridge. 

 

Mode f (Hz) [min-max] Deformation str (-) [min-max] 

1 1.3 1st flexural 

 

0.35-0.40% 

2 3.1 2nd flexural 

 

0.24-0.25% 

3 3.9 1st torsional 

 

0.14-0.15% 

4 6.0 3rd flexural 

 

0.16-0.17% 

5 7.8 2nd torsional 

 

0.12-0.30% 

6 9.8 4th flexural 

 

- 

7 11.4 3rd torsional 0.15-0.30% 

Table 1. Model characterization: frequencies and nondimensional damping 
 

 
Figure 8 Decay test: First torsional mode at quarter span 

 



The nondimensional damping was defined through decay tests in still air. In Figure 8 is 

shown, as an example, the time history measured at a quarter span for a decay tests relative to 

the first torsional mode. The corresponding nondimensional damping as a function of the 

displacement of the leading edge is reported in Figure 9. 
 

 
Figure 9 Decay test: Nondimensional damping for the first torsional mode  

 

Experimental results 

In order to study vortex shedding phenomenon, the dynamic response of the model was 

studied as a function of the wind velocity: the velocity was changed in order to excite the first 

flexural and torsional modes of the model. The response has been analyzed considering the 

half-sum or the half-difference between the two accelerometers placed in each section 

upwind and downwind. The half-sum permits to put on evidence the contribution due to 

bending modes, on the contrary, the half-difference permits to put on evidence the 

contribution due to torsional modes. In particular the half-difference has been referred at the 

leading edge of the deck. In the following figures the half-sum will be called z acceleration 

(z) and the half difference θ equivalent acceleration (θeq). 
 

Operating conditions tests 

The model was tested in the expected operating conditions i.e. naked and with two different 

wind screens. The deck was investigated also changing the angle of attack α and the yaw 

angle β. 

In all these configurations no relevant oscillations were observed. In Figure 10 and in Figure 

11 there are reported the standard deviations of the θeq and of the z acceleration respectively, 

in correspondence of the ¾ span, as a function of the wind velocity. Some configurations are 

shown: naked deck, 2 wind screens deck for three different angles of attack (-3 deg, 0 deg, +3 

deg), 2 wind screens and wings. Figure 11 highlights that no flexural excitation can be 

observed: the standard deviation slightly grows with the wind velocity with a parabolic law. 

In Figure 10 a small peak can be noticed at about U=2.4 m/s especially for the configuration 

2WS (2 wind screens) at 0 deg and -3 deg as angle of attack. A very narrow lock-in region is 

defined around the peak and it corresponds to an excitation of the second torsional mode. The 

reduced velocity correspondent to the peak is equal to * 0.27U U fB  . 

In Figure 12 it is shown the spectrum of the θeq acceleration for the configuration 2W at 0 deg 

and -3 deg: it is possible to note that a clear peak in correspondence of the second torsional 

frequency is present (7.9 Hz). Anyway the absolute value of the peak is very small and 

negligible for the design of the deck 

 



 
Figure 10 Standard deviation of the half-difference acceleration at ¾ span (θeq) as a function 

of the wind velocity for different operating conditions 

 
Figure 11 Standard deviation of the half-sum acceleration at ¾ span (z) as a function of the 

wind velocity for different operating conditions 

 
Figure 12 Spectrum of the half-difference acceleration at ¾ span (θeq) for U=2.44 m/s 

 

Test case (deck with train) 

The model was tested in the previous defined configurations also in presence of a train in the 

rail lane. The configurations with wind screens seem not to show significant differences due 

to the presence of the train, on the contrary the naked configuration has a completely 

different aerodynamic behavior. As it is possible to see in Figure 13 and in Figure 14 more 

than one mode has been excited reaching significant level of acceleration. In the wind 

f=7.8 Hz 



velocity range investigated the first torsional mode (Figure 13) has been excited at about 

U=3.9 m/s (U
*
=0.86), while the first three flexural modes have been excited at about U=1.1 

m/s, U=2.6 m/s and U=5.3 m/s respectively, at a reduced velocity equal to U
*
=0.7 for all the 

modes. The lock-in regions for each mode are quite wide and the spectra of the 

accelerometers highlight well defined peaks with significant magnitude (see Figure 15 and 

Figure 16). In this condition the phenomenon is completely controlled by the train, in fact the 

reduced velocity at which the excitation occurs is different to the one observed without the 

train. The wind screens, with or without wings, suppress the vortex shedding changing the 

characteristics of the flow around the train: in particular the turbulence intensity increases 

from 2% to 10 %. 

 
Figure 13 Standard deviation of the half-difference acceleration at ¾ span (θeq) as a function 

of the wind velocity for different operating conditions in presence of the train 

 
Figure 14 Standard deviation of the half-sum acceleration at ¾ span (z) as a function of the 

wind velocity for different operating conditions in presence of the train 

f=3.9 Hz 

f=1.3 Hz 

f=3.1 Hz 

f=6 Hz 



 
Figure 15 Spectra of the half-sum acceleration at ¾ span (z) for three wind velocities, naked 

configuration with train 

 
Figure 16 Spectra of the half-difference acceleration at ¾ span (θeq) at U=3.91 m/s, naked 

configuration with train 

 

Conclusions 
 

The original set up presented in the paper shows good potentialities in studying vortex 

induced vibration on deck bridges. It permits to reproduce more than one mode of the bridge, 

taking into account the deformable shape of each mode as a classical aeroelastic model, and it 

permits also to reproduce geometrical details with accuracy and to reach very low 

nondimensional damping i.e. Scruton number as a rigid sectional suspended model. 

Moreover, its frequencies can be tuned in order to be excited by not too low wind velocities.  

The studied deck (Third Bosporus Bridge) does not show significant vortex shedding 

problems: the phenomenon can be observed but induced accelerations are negligible. Only 

the naked deck with the train shows high oscillation amplitude but the presence of the wind 

screens can eliminate the phenomenon: this configuration has been used to investigate the 

set-up capability in reproducing and measuring vortex shedding. 
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