347 research outputs found

    Polymorphisms in toll-like receptor genes and susceptibility to pulmonary aspergillosis

    Get PDF
    Toll-like receptors (TLRs) are important components of innate immunity. We investigated the association between polymorphisms in the TLR2, TLR4, and TLR9 genes and susceptibility to noninvasive forms of pulmonary aspergillosis. A significant association was observed between allele G on Asp299Gly (TLR4) and chronic cavitary pulmonary aspergillosis (odds ratio [OR], 3.46; P =.003). Susceptibility to allergic bronchopulmonary aspergillosis was associated with allele C on T-1237C (TLR9) (OR, 2.49; P =. 043). No particular polymorphism was associated with severe asthma with fungal sensitization. These findings reinforce the importance of innate immunity in the pathogenesis of different forms of aspergillosis.Fundação para a Ciência e Tecnologia, Portugal (POCI/SAU-ESP/61080/ 2004 and fellowship to A.C., contract SFRH/BD/11837/2003); CAPES (Brazilian government) (grant to A.P); and the Fungal Research Trust, United Kingdom

    The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps

    Get PDF
    The long pentraxin (PTX) 3 is produced by macrophages and myeloid dendritic cells in response to Toll-like receptor agonists and represents a nonredundant component of humoral innate immunity against selected pathogens. We report that, unexpectedly, PTX3 is stored in specific granules and undergoes release in response to microbial recognition and inflammatory signals. Released PTX3 can partially localize in neutrophil extracellular traps formed by extruded DNA. Eosinophils and basophils do not contain preformed PTX3. PTX3-deficient neutrophils have defective microbial recognition and phagocytosis, and PTX3 is nonredundant for neutrophil-mediated resistance against Aspergillus fumigatus. Thus, neutrophils serve as a reservoir, ready for rapid release, of the long PTX3, a key component of humoral innate immunity with opsonic activity

    Genetic susceptibility to aspergillosis in allogeneic stem-cell transplantation

    Get PDF
    Invasive aspergillosis (IA) is a major threat to positive outcomes for allogeneic stem-cell transplantation (allo-SCT) patients. Despite presenting similar degrees of immunosuppression, not all individuals at-risk ultimately develop infection. Therefore, the traditional view of neutropenia as a key risk factor for aspergillosis needs to be accommodated within new conceptual advances on host immunity and its relationship to infection. Polymorphisms in innate immune genes, such as those encoding TLRs, cytokines and cytokine receptors, have recently been associated with susceptibility to IA in allo-SCT recipients. This suggests that understanding host-pathogen interactions at the level of host genetic susceptibility will allow the formulation of new targeted and patient-tailored antifungal therapeutics, including improved donor screening.Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/65962/2009, SFRH/BPD/46292/2008Specific Targeted Research Projects MANASP (LSHE-CT-2006), contract number 037899 (FP6), Italian Project PRIN2007KLCKP8_004

    Non-hematopoietic cells contribute to protective tolerance to Aspergillus fumigatus via a TRIF pathway converging on IDO

    Get PDF
    Innate responses combine with adaptive immunity to generate the most effective form of anti-Aspergillus immune resistance. Whereas the pivotal role of dendritic cells in determining the balance between immunopathology and protective immunity to the fungus is well established, we determined that epithelial cells (ECs) also contributes to this balance. Mechanistically, EC-mediated protection occurred through a Toll-like receptor 3/Toll/IL-1 receptor domain-containing adaptor-inducing interferon (TLR3/TRIF)-dependent pathway converging on indoleamine 2,3-dioxygenase (IDO) via non-canonical nuclear factor-?B activation. Consistent with the high susceptibility of TRIF-deficient mice to pulmonary aspergillosis, bone marrow chimeric mice with TRIF unresponsive ECs exhibited higher fungal burdens and inflammatory pathology than control mice, underexpressed the IDO-dependent T helper 1/regulatory T cell (Th1/Treg) pathway and overexpressed the Th17 pathway with massive neutrophilic inflammation in the lungs. Further studies with interferon (IFN)-?, IDO or IL-17R unresponsive cells confirmed the dependency of immune tolerance to the fungus on the IFN-?/IDO/Treg pathway and of immune resistance on the MyD88 pathway controlling the fungal growth. Thus, distinct immune pathways contribute to resistance and tolerance to the fungus, to which the hematopoietic/non-hematopoietic compartments contribute through distinct, yet complementary, roles.We thank Cristina Massi Benedetti for digital art and editing. This work was supported by the Specific Targeted Research Project 'Sybaris' (LSHE-CT-2006), contract number 037899 (FP7) and by the Italian Projects PRIN 2007KLCKP8_004 (to LR) and 2007XYB9T9_001 (to SB). CC and AC were financially supported by fellowships from Fundacao para a Ciencia e Tecnologia, Portugal (contracts SFRH/BD/65962/2009 and SFRH/BPD/46292/2008, respectively)

    Functional heterogeneity of POMC neurons relies on mTORC1 signaling.

    Get PDF
    Hypothalamic pro-opiomelanocortin (POMC) neurons are known to trigger satiety. However, these neuronal cells encompass heterogeneous subpopulations that release γ-aminobutyric acid (GABA), glutamate, or both neurotransmitters, whose functions are poorly defined. Using conditional mutagenesis and chemogenetics, we show that blockade of the energy sensor mechanistic target of rapamycin complex 1 (mTORC1) in POMC neurons causes hyperphagia by mimicking a cellular negative energy state. This is associated with decreased POMC-derived anorexigenic α-melanocyte-stimulating hormone and recruitment of POMC/GABAergic neurotransmission, which is restrained by cannabinoid type 1 receptor signaling. Electrophysiology and optogenetic studies further reveal that pharmacological blockade of mTORC1 simultaneously activates POMC/GABAergic neurons and inhibits POMC/glutamatergic ones, implying that the functional specificity of these subpopulations relies on mTORC1 activity. Finally, POMC neurons with different neurotransmitter profiles possess specific molecular signatures and spatial distribution. Altogether, these findings suggest that mTORC1 orchestrates the activity of distinct POMC neurons subpopulations to regulate feeding behavior

    Plasminogen Alleles Influence Susceptibility to Invasive Aspergillosis

    Get PDF
    Invasive aspergillosis (IA) is a common and life-threatening infection in immunocompromised individuals. A number of environmental and epidemiologic risk factors for developing IA have been identified. However, genetic factors that affect risk for developing IA have not been clearly identified. We report that host genetic differences influence outcome following establishment of pulmonary aspergillosis in an exogenously immune suppressed mouse model. Computational haplotype-based genetic analysis indicated that genetic variation within the biologically plausible positional candidate gene plasminogen (Plg; Gene ID 18855) correlated with murine outcome. There was a single nonsynonymous coding change (Gly110Ser) where the minor allele was found in all of the susceptible strains, but not in the resistant strains. A nonsynonymous single nucleotide polymorphism (Asp472Asn) was also identified in the human homolog (PLG; Gene ID 5340). An association study within a cohort of 236 allogeneic hematopoietic stem cell transplant (HSCT) recipients revealed that alleles at this SNP significantly affected the risk of developing IA after HSCT. Furthermore, we demonstrated that plasminogen directly binds to Aspergillus fumigatus. We propose that genetic variation within the plasminogen pathway influences the pathogenesis of this invasive fungal infection

    The endocannabinoid system controls food intake via olfactory processes

    Get PDF
    Comment in Sensory systems: the hungry sense. [Nat Rev Neurosci. 2014] Inhaling: endocannabinoids and food intake. [Nat Neurosci. 2014]; International audience; Hunger arouses sensory perception, eventually leading to an increase in food intake, but the underlying mechanisms remain poorly understood. We found that cannabinoid type-1 (CB1) receptors promote food intake in fasted mice by increasing odor detection. CB1 receptors were abundantly expressed on axon terminals of centrifugal cortical glutamatergic neurons that project to inhibitory granule cells of the main olfactory bulb (MOB). Local pharmacological and genetic manipulations revealed that endocannabinoids and exogenous cannabinoids increased odor detection and food intake in fasted mice by decreasing excitatory drive from olfactory cortex areas to the MOB. Consistently, cannabinoid agonists dampened in vivo optogenetically stimulated excitatory transmission in the same circuit. Our data indicate that cortical feedback projections to the MOB crucially regulate food intake via CB1 receptor signaling, linking the feeling of hunger to stronger odor processing. Thus, CB1 receptor-dependent control of cortical feedback projections in olfactory circuits couples internal states to perception and behavior

    Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex

    Get PDF
    We studied the distribution and coexpression of vesicular glutamate transporters (VGluT1, VGluT2), glutamic acid decarboxylase (GAD) and calretinin (CR, calcium-binding protein) in rat entorhinal cortex, using immunofluorescence staining and multichannel confocal laser scanning microscopy. Images were computer processed and subjected to automated 3D object recognition, colocalization analysis and 3D reconstruction. Since the VGluTs (in contrast to CR and GAD) occurred in fibers and axon terminals only, we focused our attention on these neuronal processes. An intense, punctate VGluT1-staining occurred everywhere in the entorhinal cortex. Our computer program resolved these punctae as small 3D objects. Also VGluT2 showed a punctate immunostaining pattern, yet with half the number of 3D objects per tissue volume compared with VGluT1, and with statistically significantly larger 3D objects. Both VGluTs were distributed homogeneously across cortical layers, with in MEA VGluT1 slightly more densely distributed than in LEA. The distribution pattern and the size distribution of GAD 3D objects resembled that of VGluT2. CR-immunopositive fibers were abundant in all cortical layers. In double-stained sections we noted ample colocalization of CR and VGluT2, whereas coexpression of CR and VGluT1 was nearly absent. Also in triple-staining experiments (VGluT2, GAD and CR combined) we noted coexpression of VGluT2 and CR and, in addition, frequent coexpression of GAD and CR. Modest colocalization occurred of VGluT2 and GAD, and incidental colocalization of all three markers. We conclude that the CR-containing axon terminals in the entorhinal cortex belong to at least two subpopulations of CR-neurons: a glutamatergic excitatory and a GABAergic inhibitory

    Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms

    Get PDF
    DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.National Institute of Dental & Craniofacial ResearchFundação para a Ciência e Tecnologia (FCT) - SFRH/BD/28222/2006National Institute of Allergy and Infectious Disease

    Neurochemical Properties of the Synapses in the Pathways of Orofacial Nociceptive Reflexes

    Get PDF
    The brainstem premotor neurons of the facial nucleus (VII) and hypoglossal (XII) nucleus can integrate orofacial nociceptive input from the caudal spinal trigeminal nucleus (Vc) and coordinate orofacial nociceptive reflex (ONR) responses. However, the synaptoarchitectures of the ONR pathways are still unknown. In the current study, we examined the distribution of GABAergic premotor neurons in the brainstem local ONR pathways, their connections with the Vc projections joining the brainstem ONR pathways and the neurochemical properties of these connections. Retrograde tracer fluoro-gold (FG) was injected into the VII or XII, and anterograde tracer biotinylated dextran amine (BDA) was injected into the Vc. Immunofluorescence histochemical labeling for inhibitory/excitatory neurotransmitters combined with BDA/FG tracing showed that GABAergic premotor neurons were mainly distributed bilaterally in the ponto-medullary reticular formation with an ipsilateral dominance. Some GABAergic premotor neurons made close appositions to the BDA-labeled fibers coming from the Vc, and these appostions were mainly distributed in the parvicellular reticular formation (PCRt), dorsal medullary reticular formation (MdD), and supratrigeminal nucleus (Vsup). We further examined the synaptic relationships between the Vc projecting fibers and premotor neurons in the VII or XII under the confocal laser-scanning microscope and electron microscope, and found that the BDA-labeled axonal terminals that made asymmetric synapses on premotor neurons showed vesicular glutamate transporter 2 (VGluT2) like immunoreactivity. These results indicate that the GABAergic premotor neurons receive excitatory neurotransmission from the Vc and may contribute to modulating the generation of the tonic ONR
    • …
    corecore