36 research outputs found

    A broadband thermal emission spectrum of the ultra-hot Jupiter WASP-18b

    Get PDF
    Close-in giant exoplanets with temperatures greater than 2,000 K (''ultra-hot Jupiters'') have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble and Spitzer Space Telescopes. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS instrument on JWST. The data span 0.85 to 2.85 μ\mum in wavelength at an average resolving power of 400 and exhibit minimal systematics. The spectrum shows three water emission features (at >>6σ\sigma confidence) and evidence for optical opacity, possibly due to H^-, TiO, and VO (combined significance of 3.8σ\sigma). Models that fit the data require a thermal inversion, molecular dissociation as predicted by chemical equilibrium, a solar heavy element abundance (''metallicity'', M/H = 1.030.51+1.11_{-0.51}^{+1.11} ×\times solar), and a carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside brightness temperature map, which shows a peak in temperature near the sub-stellar point that decreases steeply and symmetrically with longitude toward the terminators.Comment: JWST ERS bright star observations. Uploaded to inform JWST Cycle 2 proposals. Manuscript under review. 50 pages, 14 figures, 2 table

    Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b

    Full text link
    Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5-12 μ\mum with JWST's Mid-Infrared Instrument (MIRI). The spectra reveal a large day-night temperature contrast (with average brightness temperatures of 1524±\pm35 and 863±\pm23 Kelvin, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase curve shape and emission spectra strongly suggest the presence of nightside clouds which become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ\sigma upper limit of 1-6 parts per million, depending on model assumptions).Comment: 61 pages, 13 figures, 4 tables. This preprint has been submitted to and accepted in principle for publication in Nature Astronomy without significant change

    Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b

    Get PDF
    Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5-12 μm with JWST's Mid-Infrared Instrument (MIRI). The spectra reveal a large day-night temperature contrast (with average brightness temperatures of 1524±35 and 863±23 Kelvin, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase curve shape and emission spectra strongly suggest the presence of nightside clouds which become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1-6 parts per million, depending on model assumptions)

    Early Release Science of the Exoplanet WASP-39b with JWST NIRSpec G395H

    Full text link
    Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems. Access to an exoplanet's chemical inventory requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based and high-resolution ground-based facilities. Here we report the medium-resolution (R\sim600) transmission spectrum of an exoplanet atmosphere between 3-5 μ\mum covering multiple absorption features for the Saturn-mass exoplanet WASP-39b, obtained with JWST NIRSpec G395H. Our observations achieve 1.46x photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO2_2 (28.5σ\sigma) and H2_2O (21.5σ\sigma), and identify SO2_2 as the source of absorption at 4.1 μ\mum (4.8σ\sigma). Best-fit atmospheric models range between 3 and 10x solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO2_2, underscore the importance of characterising the chemistry in exoplanet atmospheres, and showcase NIRSpec G395H as an excellent mode for time series observations over this critical wavelength range.Comment: 44 pages, 11 figures, 3 tables. Resubmitted after revision to Natur

    Early Release Science of the exoplanet WASP-39b with JWST NIRCam

    Full text link
    Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres is a fundamental step towards constraining the dominant chemical processes at work and, if in equilibrium, revealing planet formation histories. Transmission spectroscopy provides the necessary means by constraining the abundances of oxygen- and carbon-bearing species; however, this requires broad wavelength coverage, moderate spectral resolution, and high precision that, together, are not achievable with previous observatories. Now that JWST has commenced science operations, we are able to observe exoplanets at previously uncharted wavelengths and spectral resolutions. Here we report time-series observations of the transiting exoplanet WASP-39b using JWST's Near InfraRed Camera (NIRCam). The long-wavelength spectroscopic and short-wavelength photometric light curves span 2.0 - 4.0 μ\mum, exhibit minimal systematics, and reveal well-defined molecular absorption features in the planet's spectrum. Specifically, we detect gaseous H2_2O in the atmosphere and place an upper limit on the abundance of CH4_4. The otherwise prominent CO2_2 feature at 2.8 μ\mum is largely masked by H2_2O. The best-fit chemical equilibrium models favour an atmospheric metallicity of 1-100×\times solar (i.e., an enrichment of elements heavier than helium relative to the Sun) and a sub-stellar carbon-to-oxygen (C/O) ratio. The inferred high metallicity and low C/O ratio may indicate significant accretion of solid materials during planet formation or disequilibrium processes in the upper atmosphere.Comment: 35 pages, 13 figures, 3 tables, Nature, accepte

    Enabling planetary science across light-years. Ariel Definition Study Report

    Get PDF
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution

    HARMONI at ELT: project status and instrument overview

    Get PDF

    Fluorescent sensors based on task specific ionic liquids for the quantification of traces of heavy metals ions in water

    No full text
    Cette thèse a pour but la réalisation de capteurs fluorescents à base de liquides ioniques à tâche spécifique pour la quantification de traces de métaux lourds dans l’eau. Dans un premier temps, des sondes moléculaires fluorescentes efficaces pour la détection du mercure, du plomb et du cadmium ont été ciblées. Une première famille de molécules d’éthers lariat d’oxyde de phosphine a montré de bonnes affinités pour le plomb et le cadmium. Tandis qu’un dérivé de séléniure de phosphine s’est révélé être un très bon chemodosimètre pour le mercure avec une limite de détection basse de 3,4 nmol.L-1. Des sondes moléculaires fluorescentes dérivées de la 8-hydroxyquinoléine comportant un groupement phosphinate ou thiophosphinate capables de complexer le mercure en milieu aqueux ont permis d’atteindre une limite de détection exceptionnelle de 0,1 nmol.L-1. Enfin, un composé dérivé de la phénantroline capable de complexer très efficacement le cadmium avec la possibilité de détecter des traces de ce cation est présenté. Après indentification des sondes spécifiques pour les métaux lourds d’intérêt pour le projet, celles-ci ont étés fonctionnalisées afin de les incorporer dans un liquide ionique hydrophobe pour former des liquides ioniques à tâche spécifique pour l’extraction et la détection de métaux lourds. En parallèle du travail concernant les sondes moléculaires, un dispositif d’analyseur de métaux lourds portatif a été mis au point, notamment un nouveau module de détection optique développé. Ce dispositif permet là aussi de détecter des traces de mercure sub-nanomolaire.The aim of this PhD is the realization of fluorescent sensors based on task specific ionic liquids for the extraction and the quantification of trace of heavy metals ions in water. As a first step, efficient fluorescent molecular probes for the detection of mercury, lead and cadmium were targeted. Two lariat ethers derivated from phosphine oxide show good affinity for lead and cadmium, while a phosphine selenide derivative has proven to be a very good chemodosimeter for mercury with a low detection limit of 3.4 nmol.L-1. Secondly, fluorescent molecular probes derived from 8-hydroxyquinoline having a phosphinate or thiophosphinate group are described. These molecules are able to coordinate mercury in aqueous medium and allow to detect a concentration of mercury in water of 0.1 nmol.L-1. Finally, a phenanthroline derivative for detection of cadmium in aqueous medium is described. With this compound, traces of cadmium can be detected. After identification of the most efficient probes for targeted heavy metals ions, they have been functionalized to be incorporated in a hydrophobic ionic liquid to form task specific ionic liquids for the extraction and detection of heavy metals ions. In parallel of this work on molecular probes, an portable analyzer of heavy metals ions has been developed, including a new optical detection module. This device can also detect sub-nanomolar traces of mercury
    corecore