227 research outputs found

    Localized bases for kernel spaces on the unit sphere

    Get PDF
    Approximation/interpolation from spaces of positive definite or conditionally positive definite kernels is an increasingly popular tool for the analysis and synthesis of scattered data, and is central to many meshless methods. For a set of NN scattered sites, the standard basis for such a space utilizes NN \emph{globally} supported kernels; computing with it is prohibitively expensive for large NN. Easily computable, well-localized bases, with "small-footprint" basis elements - i.e., elements using only a small number of kernels -- have been unavailable. Working on \sphere, with focus on the restricted surface spline kernels (e.g. the thin-plate splines restricted to the sphere), we construct easily computable, spatially well-localized, small-footprint, robust bases for the associated kernel spaces. Our theory predicts that each element of the local basis is constructed by using a combination of only O((logN)2)\mathcal{O}((\log N)^2) kernels, which makes the construction computationally cheap. We prove that the new basis is LpL_p stable and satisfies polynomial decay estimates that are stationary with respect to the density of the data sites, and we present a quasi-interpolation scheme that provides optimal LpL_p approximation orders. Although our focus is on S2\mathbb{S}^2, much of the theory applies to other manifolds - Sd\mathbb{S}^d, the rotation group, and so on. Finally, we construct algorithms to implement these schemes and use them to conduct numerical experiments, which validate our theory for interpolation problems on S2\mathbb{S}^2 involving over one hundred fifty thousand data sites.Comment: This article supersedes arXiv:1111.1013 "Better bases for kernel spaces," which proved existence of better bases for various kernel spaces. This article treats a smaller class of kernels, but presents an algorithm for constructing better bases and demonstrates its effectiveness with more elaborate examples. A quasi-interpolation scheme is introduced that provides optimal linear convergence rate

    HER2 mediates PSMA/mGluR1-driven resistance to the DS-7423 dual PI3K/mTOR inhibitor in PTEN wild-type prostate cancer models

    Get PDF
    Prostate cancer remains a major cause of male mortality. Genetic alteration of the PI3K/AKT/mTOR pathway is one of the key events in tumor development and progression in prostate cancer, with inactivation of the PTEN tumor suppressor being very common in this cancer type. Extensive evaluation has been performed on the therapeutic potential of PI3K/AKT/mTOR inhibitors and the resistance mechanisms arising in patients with PTEN-mutant background. However, in patients with a PTEN wild-type phenotype, PI3K/AKT/mTOR inhibitors have not demonstrated efficacy, and this remains an area of clinical unmet need. In this study, we have investigated the response of PTEN wild-type prostate cancer cell lines to the dual PI3K/mTOR inhibitor DS-7423 alone or in combination with HER2 inhibitors or mGluR1 inhibitors. Upon treatment with the dual PI3K/mTOR inhibitor DS-7423, PTEN wild-type prostate cancer CWR22/22RV1 cells upregulate expression of the proteins PSMA, mGluR1, and the tyrosine kinase receptor HER2, while PTEN-mutant LNCaP cells upregulate androgen receptor and HER3. PSMA, mGluR1, and HER2 exert control over one another in a positive feedback loop that allows cells to overcome treatment with DS-7423. Concomitant targeting of PI3K/mTOR with either HER2 or mGluR1 inhibitors results in decreased cell survival and tumor growth in xenograft studies. Our results suggest a novel therapeutic possibility for patients with PTEN wild-type PI3K/AKT-mutant prostate cancer based in the combination of PI3K/mTOR blockade with HER2 or mGluR1 inhibitors

    Surface Hardness Impairment of Quorum Sensing and Swarming for Pseudomonas aeruginosa

    Get PDF
    The importance of rhamnolipid to swarming of the bacterium Pseudomonas aeruginosa is well established. It is frequently, but not exclusively, observed that P. aeruginosa swarms in tendril patterns—formation of these tendrils requires rhamnolipid. We were interested to explain the impact of surface changes on P. aeruginosa swarm tendril development. Here we report that P. aeruginosa quorum sensing and rhamnolipid production is impaired when growing on harder semi-solid surfaces. P. aeruginosa wild-type swarms showed huge variation in tendril formation with small deviations to the “standard” swarm agar concentration of 0.5%. These macroscopic differences correlated with microscopic investigation of cells close to the advancing swarm edge using fluorescent gene reporters. Tendril swarms showed significant rhlA-gfp reporter expression right up to the advancing edge of swarming cells while swarms without tendrils (grown on harder agar) showed no rhlA-gfp reporter expression near the advancing edge. This difference in rhamnolipid gene expression can be explained by the necessity of quorum sensing for rhamnolipid production. We provide evidence that harder surfaces seem to limit induction of quorum sensing genes near the advancing swarm edge and these localized effects were sufficient to explain the lack of tendril formation on hard agar. We were unable to artificially stimulate rhamnolipid tendril formation with added acyl-homoserine lactone signals or increasing the carbon nutrients. This suggests that quorum sensing on surfaces is controlled in a manner that is not solely population dependent

    Global dissemination of a multidrug resistant Escherichia coli clone.

    Get PDF
    Escherichia coli sequence type 131 (ST131) is a globally disseminated, multidrug resistant (MDR) clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with several factors, including resistance to fluoroquinolones, high virulence gene content, the possession of the type 1 fimbriae FimH30 allele, and the production of the CTX-M-15 extended spectrum β-lactamase (ESBL). Here, we used genome sequencing to examine the molecular epidemiology of a collection of E. coli ST131 strains isolated from six distinct geographical locations across the world spanning 2000-2011. The global phylogeny of E. coli ST131, determined from whole-genome sequence data, revealed a single lineage of E. coli ST131 distinct from other extraintestinal E. coli strains within the B2 phylogroup. Three closely related E. coli ST131 sublineages were identified, with little association to geographic origin. The majority of single-nucleotide variants associated with each of the sublineages were due to recombination in regions adjacent to mobile genetic elements (MGEs). The most prevalent sublineage of ST131 strains was characterized by fluoroquinolone resistance, and a distinct virulence factor and MGE profile. Four different variants of the CTX-M ESBL-resistance gene were identified in our ST131 strains, with acquisition of CTX-M-15 representing a defining feature of a discrete but geographically dispersed ST131 sublineage. This study confirms the global dispersal of a single E. coli ST131 clone and demonstrates the role of MGEs and recombination in the evolution of this important MDR pathogen

    The Complete Genome Sequence of Escherichia coli EC958: A High Quality Reference Sequence for the Globally Disseminated Multidrug Resistant E. coli O25b:H4-ST131 Clone

    Get PDF
    Escherichia coli ST131 is now recognised as a leading contributor to urinary tract and bloodstream infections in both community and clinical settings. Here we present the complete, annotated genome of E. coli EC958, which was isolated from the urine of a patient presenting with a urinary tract infection in the Northwest region of England and represents the most well characterised ST131 strain. Sequencing was carried out using the Pacific Biosciences platform, which provided sufficient depth and read-length to produce a complete genome without the need for other technologies. The discovery of spurious contigs within the assembly that correspond to site-specific inversions in the tail fibre regions of prophages demonstrates the potential for this technology to reveal dynamic evolutionary mechanisms. E. coli EC958 belongs to the major subgroup of ST131 strains that produce the CTX-M-15 extended spectrum β-lactamase, are fluoroquinolone resistant and encode the fimH30 type 1 fimbrial adhesin. This subgroup includes the Indian strain NA114 and the North American strain JJ1886. A comparison of the genomes of EC958, JJ1886 and NA114 revealed that differences in the arrangement of genomic islands, prophages and other repetitive elements in the NA114 genome are not biologically relevant and are due to misassembly. The availability of a high quality uropathogenic E. coli ST131 genome provides a reference for understanding this multidrug resistant pathogen and will facilitate novel functional, comparative and clinical studies of the E. coli ST131 clonal lineage

    Integrative omics identifies conserved and pathogen-specific responses of sepsis-causing bacteria

    Get PDF
    Even in the setting of optimal resuscitation in high-income countries severe sepsis and septic shock have a mortality of 20–40%, with antibiotic resistance dramatically increasing this mortality risk. To develop a reference dataset enabling the identification of common bacterial targets for therapeutic intervention, we applied a standardized genomic, transcriptomic, proteomic and metabolomic technological framework to multiple clinical isolates of four sepsis-causing pathogens: Escherichia coli, Klebsiella pneumoniae species complex, Staphylococcus aureus and Streptococcus pyogenes. Exposure to human serum generated a sepsis molecular signature containing global increases in fatty acid and lipid biosynthesis and metabolism, consistent with cell envelope remodelling and nutrient adaptation for osmoprotection. In addition, acquisition of cholesterol was identified across the bacterial species. This detailed reference dataset has been established as an open resource to support discovery and translational research

    Hypothyroidism Enhances Tumor Invasiveness and Metastasis Development

    Get PDF
    11 pages, 9 figures.[Background]: Whereas there is increasing evidence that loss of expression and/or function of the thyroid hormone receptors (TRs) could result in a selective advantage for tumor development, the relationship between thyroid hormone levels and human cancer is a controversial issue. It has been reported that hypothyroidism might be a possible risk factor for liver and breast cancer in humans, but a lower incidence of breast carcinoma has been also reported in hypothyroid patients [Methodology/Principal Findings]: In this work we have analyzed the influence of hypothyroidism on tumor progression and metastasis development using xenografts of parental and TRβ1–expressing human hepatocarcinoma (SK-hep1) and breast cancer cells (MDA-MB-468). In agreement with our previous observations tumor invasiveness and metastasis formation was strongly repressed when TRβ–expressing cells were injected into euthyroid nude mice. Whereas tumor growth was retarded when cells were inoculated into hypothyroid hosts, tumors had a more mesenchymal phenotype, were more invasive and metastatic growth was enhanced. Increased aggressiveness and tumor growth retardation was also observed with parental cells that do not express TRs. [Conclusions/Significance]: These results show that changes in the stromal cells secondary to host hypothyroidism can modulate tumor progression and metastatic growth independently of the presence of TRs on the tumor cells. On the other hand, the finding that hypothyroidism can affect differentially tumor growth and invasiveness can contribute to the explanation of the confounding reports on the influence of thyroidal status in human cancer.This work was supported by grants BFU2007-62402 from MEC; RD06/0020/0036 from FIS and from the EU Project CRESCENDO (FP6-018652.Peer reviewe

    Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit?

    Get PDF
    The link between estrogen and the development and proliferation of breast cancer is well documented. Estrogen stimulates growth and inhibits apoptosis through estrogen receptor-mediated mechanisms in many cell types. Interestingly, there is strong evidence that estrogen induces apoptosis in breast cancer and other cell types. Forty years ago, before the development of tamoxifen, high-dose estrogen was used to induce tumor regression of hormone-dependent breast cancer in post-menopausal women. While the mechanisms by which estrogen induces apoptosis were not completely known, recent evidence from our laboratory and others demonstrates the involvement of the extrinsic (Fas/FasL) and the intrinsic (mitochondria) pathways in this process. We discuss the different apoptotic signaling pathways involved in E2 (17β-estradiol)-induced apoptosis, including the intrinsic and extrinsic apoptosis pathways, the NF-κB (nuclear factor-kappa-B)-mediated survival pathway as well as the PI3K (phosphoinositide 3-kinase)/Akt signaling pathway. Breast cancer cells can also be sensitized to estrogen-induced apoptosis through suppression of glutathione by BSO (L-buthionine sulfoximine). This finding has implications for the control of breast cancer with low-dose estrogen and other targeted therapeutic drugs
    corecore