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LOCALIZED BASES FOR KERNEL SPACES ON THE UNIT SPHERE∗

E. FUSELIER† , T. HANGELBROEK‡ , F. J. NARCOWICH§ , J. D. WARD§ , AND

G. B. WRIGHT¶

Abstract. Approximation/interpolation from spaces of positive definite or conditionally positive
definite kernels is an increasingly popular tool for the analysis and synthesis of scattered data and is
central to many meshless methods. For a set of N scattered sites, the standard basis for such a space
utilizes N globally supported kernels; computing with it is prohibitively expensive for large N . Easily
computable, well-localized bases with “small-footprint” basis elements—i.e., elements using only a
small number of kernels—have been unavailable. Working on S2, with focus on the restricted surface
spline kernels (e.g., the thin-plate splines restricted to the sphere), we construct easily computable,
spatially well-localized, small-footprint, robust bases for the associated kernel spaces. Our theory
predicts that each element of the local basis is constructed by using a combination of only O((logN)2)
kernels, which makes the construction computationally cheap. We prove that the new basis is Lp

stable and satisfies polynomial decay estimates that are stationary with respect to the density of
the data sites, and we present a quasi-interpolation scheme that provides optimal Lp approximation
orders. Although our focus is on S2, much of the theory applies to other manifolds—Sd, the rotation
group, and so on. Finally, we construct algorithms to implement these schemes and use them to
conduct numerical experiments, which validate our theory for interpolation problems on S2 involving
over 150,000 data sites.
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1. Introduction. Approximation/interpolation with positive definite or condi-
tionally positive definite kernels is an increasingly popular tool for analyzing and syn-
thesizing of scattered data and is central to many meshless methods. A basic challenge
in using this tool is that well-localized bases with “small-footprint” elements—i.e., el-
ements using only a small number of kernels—have been unavailable. With this in
mind, we have two main goals for this paper.

The first is the theoretical development of small-footprint bases that are well-
localized spatially, for a variety of kernels. For important classes of kernels on S2, the
theory itself predicts that a basis element requires only O(log(N)2) kernels, where N
is the number of data sites.

Previous numerical experiments on data sets, with N on the order of 1000, proved
quite successful, but the method for determining the localized basis elements does not
scale. The predictions of our theory, on the other hand, have been verified numerically
on S2 for data sets with over 100,000 sites.
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LOCALIZED BASES FOR KERNEL SPACES 2539

Our second goal is to show how to easily and efficiently compute these small-
footprint, robust (i.e., well-localized, Lp stable) bases for spaces associated with re-
stricted surface-spline kernels on the sphere S2. The kernels in question are spherical
basis functions having the form

(1.1) km(x, α) := (−1)m(1− x · α)m−1 log(1− x · α)
for m = 2, 3, . . . (cf. [18, equation 3.3]). The kernel spaces are denoted Sm(Ξ)—
these are finite dimensional spaces of functions obtained as linear combinations of
km, sampled at some (finite) set of nodes Ξ ⊂ S2, plus a spherical polynomial p of
degree m− 1, i.e.,

∑
ξ∈Ξ aξkm(·, ξ) + p(·). The coefficients involved satisfy the simple

side conditions given in 3.1.
The Lagrange functions χξ, which interpolate cardinal sequences χξ(ζ) = δξ,ζ , ζ ∈

Ξ, form a basis for Sm(Ξ). Recently, it has been shown in [12], for restricted surface
splines as well as many other kernels, that these functions decay extremely rapidly
away from ξ. Thus, {χξ}ξ∈Ξ forms a basis that is theoretically quite good (sufficient
to demonstrate that the Lebesgue constant is uniformly bounded, among many other
things). However, determining a Lagrange basis function generally requires solving a
full linear system with at least N := #Ξ unknowns, so working with this basis directly
is computationally expensive. In this paper we consider an alternative basis, one that
shares many of the nice properties of the Lagrange basis, yet whose construction is
computationally cheap.

Here is what we would desire in an easily computed, robust basis {bξ}ξ∈Ξ for
Sm(Ξ). Each basis function should be highly localized with respect to the mesh norm
h := maxx∈S2 dist(x,Ξ) of Ξ. Moreover, each should have a nearly stationary construc-
tion. By this we mean that each basis element bξ is of the form

∑
η∈Υ(ξ) Aξ,ηkm(·, η)+

pξ, where the coefficients Aξ,η and the degree m − 1 polynomial pξ are completely
determined by km and a small subset of centers Υ(ξ). Specifically, we wish bξ to
satisfy the following requirements:

(i) #Υ(ξ) = c(N),

(ii) |bξ(x)| ≤ σ(r/h), r := dist(x, ξ),

where the number of points influencing each basis function c(N) is constant or slowly
growing with N , and the function σ(·) decays rapidly—at an exponential rate σ(t) ≤
Ce−ν|t| or at least at a fast polynomial rate σ(t) ≤ C(1 + |t|)−J . The B-spline basis,
constructed from the family of truncated power functions (i.e., using (x−y)m+ in place
of km(x, y)), is a model solution to the problem we consider.

Main results. The solution we present is to consider a basis of “local Lagrange”
functions, which are constructed below in section 3. It has the following properties:

• Numerical stability. For any J > 2, one can construct a numerically stable
basis with decay σ(t) ≤ C(1 + |t|)−J .

• Small footprint. Each basis function is determined by a relatively small set
of centers: c(N) ≤ M(logN)2, where the constant M is proportional to the
square of the rate of decay J : M ∝ J2.

• Lp stability. The basis is stable in Lp: sequence norms ‖c‖�p of the coefficients
are comparable to Lp norms of the expansion

∑
ξ∈Ξ cξbξ.

• Near-best L∞ approximation. For sufficiently large J , the operator QΞf =∑
ξ∈Ξ f(ξ)bξ provides near-best L∞ approximation.

Preconditioners. Over the years practical implementation of kernel approxi-
mation has progressed despite the ill-conditioning of kernel bases. This has happened
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2540 FUSELIER, HANGELBROEK, NARCOWICH, WARD, AND WRIGHT

with the help of clever numerical techniques like multipole methods and other fast
methods of evaluation [1, 4, 13] and often with the help of preconditioners [3, 7, 15, 25].
Many results already exist in the radial basis function (RBF) literature concerning
preconditioners and “better” bases. For a good list of references and further discus-
sion, see [6]. Several of these papers use local Lagrange functions in their efforts to
efficiently construct interpolants, but the number of points chosen to localize the La-
grange functions are based on experimental evidence. For example, Faul and Powell,
in [8], devise an algorithm which converges to a given RBF interpolant that is based on
local Lagrange interpolants using about thirty nearby centers. Beatson, Cherrie, and
Mouat, in [2, Table 1, p. 260], use fifty local centers in their construction along with
a few “far away” points to control the growth of the local interpolant at a distance
from the center. In other work, Ling and Kansa [15] and co-workers have studied
approximate cardinal basis functions based on solving least squares problems.

An offshoot of our results is a strategy for selecting centers for preconditioning
(as in [8] and [2]) that scales correctly with the total number of centers N . We
demonstrate the power of this approach in section 7, where the local basis is used
to successfully precondition kernel interpolation problems varying in size by several
orders of magnitude.

Organization. We now sketch the outline of the remainder of the article. In
section 2 we give some background on kernel approximation and analysis on spheres.
Section 3 presents the construction of the local Lagrange basis. Much of the remainder
of the article is devoted to proving that this basis has the desired properties mentioned
above. However, doing this will first require a thorough understanding of the (full)
Lagrange basis {χξ}ξ∈Ξ, which we study in detail in sections 4 and 5.

In section 4 we consider the full Lagrange basis: the stable, local bases constructed
in [12]. We demonstrate, numerically, the decay of these functions as well as the
coefficients used in their construction. These numerical observations confirm the
theory in section 5, where it is proved that the Lagrange coefficients indeed decay
quickly and stationarily with respect to h as ζ moves away from ξ.

Section 6 treats the main arguments of the paper. Section 6.1 introduces the
truncated Lagrange functions (essentially χ̃ξ =

∑
ζ∈Υ(ξ) Aξ,ζkm(·, ζ)), obtained by

thresholding most of the coefficients of the Lagrange function. It demonstrates the
basis properties of these functions and discusses an extra adjustment to the coeffi-
cients which is necessary to make each χ̃ξ satisfy moment conditions associated to the
restricted surface splines.

2. Background.

2.1. The sphere. We denote by S
2 the unit sphere in R

3, and by μ we denote
Lebesgue measure. The distance between two points, x and ξ, on the sphere is written
dist(x, ξ) := arccos(x · ξ). The basic neighborhood is the spherical “cap” B(α, r) :=
{x ∈ S2 : dist(x, α) < r}. The volume of a spherical cap is μ(B(α, r)) = 2π(1− cos r).

Throughout this article, Ξ is assumed to be a finite set of distinct nodes on S2,
and we denote the number of elements in Ξ by #Ξ. The mesh norm or fill distance,
h := h(Ξ, S2) := maxx∈S2 dist(x,Ξ), measures the density of Ξ in S2. The separation
radius is q := 1

2 minξ �=ζ dist(ζ, ξ), where ξ, ζ ∈ Ξ, and the mesh ratio is ρΞ := h/q.
Our results will be coordinate independent. Nevertheless, it is important to pro-

vide various geometric quantities in spherical coordinates. Given a north pole on S2,
we will use the longitude θ1 ∈ [0, 2π) and the colatitude θ2 ∈ [0, π] as coordinates.
The metric tensor gij in these coordinates is a diagonal matrix with g11 = sin2(θ2)
and g22 = 1. As is customary in differential geometry, the inverse of gij is denoted by
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gij . This is of course diagonal and has the form g11 = (sin2(θ2))
−1 and g22 = 1. Also,

the measure dμ = sin(θ2)dθ1dθ2, and the Laplace–Beltrami operator is then given by

Δ =
1

sin2(θ2)

∂2

∂θ21
+

1

sin(θ2)

∂

∂θ2
sin(θ2)

∂

∂θ2
.

Spectral properties of the Laplace–Beltrami operator. For each  ∈ N,
the eigenvalues of the negative of the Laplace–Beltrami operator, −Δ, have the form
ν� := (1 + ); these have multiplicity 2+ 1. For each fixed , the eigenspace H� has
an orthonormal basis of 2+ 1 eigenfunctions, {Y μ

� }�μ=−�, the spherical harmonics of
degree . The space of spherical harmonics of degree  ≤ σ is Πσ =

⊕
�≤σ H� and has

dimension (σ + 1)2. These are the basic objects of Fourier analysis on the sphere. In
order to simplify notation, we often denote a generic basis for Πσ as (φj)j=1...(σ+1)2 .
We deviate from this only when a specific basis of spherical harmonics is required.

Covariant derivatives and smoothness spaces. The covariant derivatives
{∇k}∞k=1 play an important role in defining smoothness spaces and in proving results
about surface splines, but they play no role in the actual implementation of the
algorithms. For a detailed discussion of these operators, where the relevant concepts
are developed for Riemannian manifolds (including S2), see [11, section 2]. Using
these derivatives and the standard inner product on the space of tensors, we have

〈∇mf,∇mg〉x =
∑

i1,...,im

(∇mf(x))i1,...,im(∇mg(x))i1,...,imgi1,i1(x) . . . gim,im(x)

with the norm being |∇mf(x)| := √〈∇mf,∇mf〉x. For each m and each measurable
subset of a manifold, the L2 Sobolev norm may be defined this way:

‖f‖Wm
2 (Ω) :=

( ∑
k≤m

∫
Ω

|∇kf(x)|2dμ(x)
)1/2

.

2.2. Conditionally positive definite kernels and interpolation. Many of
the useful computational properties of restricted surface splines stem from the fact
that they are conditionally positive definite.

Definition 2.1. A kernel k is conditionally positive definite with respect to a
finite dimensional space Π if, for any set of N distinct centers Ξ, the matrix KΞ :=
(k(ξ, ζ))ξ,ζ∈Ξ is positive definite on all vectors a 
= 0 ∈ CN satisfying

∑
ξ∈Ξ aξp(ξ) = 0

for p ∈ Π.
Here is an example pertinent to the kernels discussed in this paper. Let (ϕj)j∈N

be the complete set of eigenfunctions of the Laplace–Beltrami for some compact Rie-
mannian manifold M. Consider a kernel

(2.1) k(x, y) :=
∑
j∈N

k̃(j)ϕj(x)ϕj(y)

having all but finitely many coefficients k̃(j) positive and
∑

j∈N
|k̃(j)|‖ϕj‖2∞ being

finite; k is thus continuous and the series is uniformly convergent. We claim that
k is conditionally positive definite with respect to the finite dimensional space Π :=
span(ϕj | j ∈ J ), where J = {j | k̃(j) ≤ 0}. Indeed, if∑ξ aξϕj(ξ) = 0 for j ∈ J , then∑

ξ∈Ξ

∑
ζ∈Ξ

aξk(ξ, ζ)aζ =
∑
j∈N

k̃(j)
∑
ξ,ζ∈Ξ

aξϕj(ξ)aζϕj(ζ) =
∑
j /∈J

k̃(j)|aϕj |Ξ|2 ≥ 0.

We must show that if this is 0, then a = 0. Suppose the quadratic form above is 0.
Then all of the terms in the series vanish, and

∑
ξ aξϕj(ξ) = 0 for all j ∈ N, not just
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2542 FUSELIER, HANGELBROEK, NARCOWICH, WARD, AND WRIGHT

those in J . Equivalently, for all j ∈ N, u(ϕj) = 0, where u :=
∑

ξ aξδξ(·). However,
in the proof of [19, Theorem 3.6] it was shown that this implies that the distribution
u ≡ 0 and, consequently, that a = 0.

Conditionally positive definite kernels are important for the following interpola-
tion problem. Suppose Ξ ⊂ S

2 is a set of nodes on the sphere, f : S2 → R is some
target function, and f |Ξ are the samples of f at the nodes in Ξ. We look for a function
that interpolates this data from the space

S(k,Ξ) := S(k,Ξ, Π) :=

{∑
ξ∈Ξ

aξk(·, ξ) |
∑
ξ∈Ξ

aξp(ξ) = 0, ∀p ∈ Π

}
+Π.

Provided Ξ ⊂ S2 is unisolvent with respect to Π (meaning that p(ξ) = 0 for all ξ ∈ Ξ
implies that p = 0 for any p ∈ Π), the unique interpolant from S(k,Ξ) can be written

s(·) =
∑
ξ∈Ξ

aξk(·, ξ) +
∑
j∈J

cjϕj(·),

where the expansion coefficients satisfy the (nonsingular) linear system of equations:

(2.2)

(
KΞ Φ
ΦT 0

)(
a
c

)
=

(
f
0

)
,

where KΞ = (k(ξi, ξj)), i, j = 1, . . . , N , and Φ = (ϕj(ξi)), i = 1, . . . , N , j ∈ J . This
interpolant plays a dual role as the minimizer of the seminorm | · |k induced from the
“native space” semiinner product

(2.3) 〈u, v〉k =

〈∑
j∈N

û(j)ϕj ,
∑
j∈N

v̂(j)ϕj

〉
k

:=
∑
j /∈J

û(j)v̂(j)

k̃(j)
.

Namely, it is the interpolant to f having minimal seminorm |u|k =
√〈u, u〉k.

3. Constructing the local Lagrange basis. The restricted surface splines
km (see (1.1)) are conditionally positive definite with respect to the space of spherical
harmonics of degree up to m−1, i.e., Πm−1. The finite dimensional spaces associated
with these kernels are denoted as in the previous section:

Sm(Ξ) := S(km,Ξ,Πm−1)

=

{∑
ξ∈Ξ

aξkm(·, ξ) |
∑
ξ∈Ξ

aξφ(ξ) = 0, ∀φ ∈ Πm−1

}
+Πm−1.

(3.1)

The goal of this section is to provide an easily constructed, robust basis for Sm(Ξ).
The fundamental idea behind building this basis is to associate with each ξ ∈ Ξ, a
new basis function that interpolates over a relatively small set of nodes a function
that is cardinal at ξ.

Specifically, let Υ(ξ) be a set of n � N nearest neighbors to the node ξ, including
the node ξ; see Figure 3.1 for an illustration. Then the new basis function associated
with ξ is given by

(3.2) χ̌ξ(·) =
∑

ζ∈Υ(ξ)

Aξ,ζkm(·, ζ) +
∑

1≤j≤m2

cξ,jφj(·),

where φj are a basis for the spherical harmonics of degree ≤ m− 1. The coefficients
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LOCALIZED BASES FOR KERNEL SPACES 2543

Fig. 3.1. Illustration of the centers that make up the local Lagrange basis. The solid gray and
black spheres mark the set of N nodes making up Ξ. The solid black sphere with a circle around it
marks the node ξ, where a local Lagrange function χ̌ξ is to be computed. The the solid black spheres
enclosed in the dashed circular line mark the set of n = M(logN)2 centers Υ(ξ) used to compute
χ̌ξ. For each ξ ∈ Ξ, a similar set Υ(ξ) is determined for computing χ̌ξ.

Aξ,ζ and cξ,j are determined from the cardinal conditions

χ̌ξ(ζ) =

{
1 if ζ = ξ,

0 if ζ ∈ Υ(ξ) \ ξ, and
∑

ζ∈Υ(ξ)

Aξ,ζφj(ζ) = 0, 1 ≤ j ≤ m2.(3.3)

These coefficients can be determined by solving the (small) linear system

(3.4)

(
KΥ(ξ) Φ

ΦT 0

)(
Aξ

cξ

)
=

(
yξ

0

)
,

where yξ represents the cardinal data and the entries of the matrix follow from (2.2).
We call χ̌ξ a local Lagrange function about ξ.

The new basis for Sm(Ξ) will consist of the collection of all the local Lagrange
functions for the nodes in Ξ. It will be shown in section 6.3 that choosing the number
of nearest neighbors to each ξ as n = M(logN)2 will give a basis with sufficient
locality. The choice of M is related to the polynomial rate of decay of χ̌ξ away from
its center, and a priori estimates are given for M in section 6.3. However, in practice
it will be sufficient to choose M by tuning it appropriately to get the desired rate of
decay.

The exact details of the algorithm for constructing this basis then proceed as
follows: For each ξ ∈ Ξ

1. find the n = M(logN)2 nearest neighbors to ξ, Υ(ξ),
2. construct χ̌ξ according to the conditions (3.3), which amounts to solving the

associated linear system (3.4) and storing the coefficients Aξ, cξ.
We note that each set Υ(ξ) can be determined in O(logN) operations by using a
KD-tree algorithm for sorting and searching through the nodes Ξ. After the initial
construction of the KD-tree, which requires O(N(logN)2), the construction of all the
sets Υ(ξ) thus takes O(N(logN)2) operations.

Before continuing, we note that our main results, given in Theorem 6.5 and its
corollaries, depend heavily on properties that this local Lagrange basis inherits from
the full Lagrange basis {χξ}ξ∈Ξ. Thus, much of what follows is spent on developing
a working understanding of the full Lagrange basis and its connections to the local
Lagrange basis. Even though the local Lagrange basis is the focus of our work, we
will delay any further mention of {χ̌ξ}ξ∈Ξ until section 6.3.
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Fig. 4.1. Maximum latitudinal values of the Lagrange function for the kernel k2(x, α). This
experiment was carried out in double precision arithmetic, and the plateau at roughly 10−11 occurs
due to ill-conditioning of the collocation matrices and truncation error.

4. The full Lagrange basis: Numerical observations. In this section we
numerically examine a full Lagrange basis function χξ and its associated coefficients
for the kernel k2(x, α) = (1 − x · α) log(1 − x · α), the second order restricted surface
spline (also known as the thin plate spline) on S2. First, we demonstrate numerically
that χξ decays exponentially away from its center. Second, we provide the initial
evidence that the Lagrange coefficients decay at roughly the same rate, which is
proved later in Theorem 5.3.

The full Lagrange function centered at ξ takes the form χξ =
∑

ζ∈ΞAξ,ζk(·, ζ)+pξ,
where pξ is a degree 1 spherical harmonic. In this example, we use the “minimal
energy points” of Womersley for the sphere—these are described and distributed at the
website [27].1 Because of the quasi-uniformity of the minimal energy point sets, it is
sufficient to consider the Lagrange function χξ centered at the north pole ξ = (0, 0, 1).

Figure 4.1 displays the maximal colatitudinal values2 of |χξ|. Until a terminal
value of roughly 10−11, we clearly observe the exponential decay of the Lagrange
function, which follows

(4.1) |χξ(x)| ≤ CL exp

(
−νL

dist(x, ξ)

h

)
.

(This “plateau” at 10−11 is caused by roundoff error—see Figure 4.3.) The estimate
(4.1) has in fact been proved in [12, Theorem 5.3], where this and other analytic

1These point sets are used as benchmarks: each set of centers has a nearly identical mesh ratio,
and the important geometric properties (e.g., fill distance and separation distance) are explicitly
documented.

2The function χξ is evaluated on a set of points (θ1, θ2) with 152 equispaced longitudes θ1 ∈ [0, 2π]
and 179 equispaced colatitudes θ2 ∈ [0, π].
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Table 4.1

Estimates of the decay constants ν and C for Lagrange functions and coefficients on the sphere
using the kernel k2(x, α) with relevant geometric measurements of the minimum energy node sets
used.

N hX ρX νL CL νc Cc

400 0.1136 1.2930 1.1119 0.8382 1.0997 0.5402
900 0.0874 1.5302 1.3556 1.0982 1.3445 0.7554
1600 0.0656 1.5333 1.3513 1.2170 1.3216 0.5946
2500 0.0522 1.5278 1.3345 0.9618 1.3117 0.5494
5041 0.0365 1.5304 1.3395 1.1080 1.3158 0.6188
10000 0.0260 1.5421 1.3645 1.1934 1.3369 0.7291

0 0.5 1 1.5 2 2.5 3
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Geodesic Distance From Center

Lagrange Coefficient Decay

 

 

N=900
N=2500
N=10000

Fig. 4.2. Plot of coefficients for a Lagrange function in the kernel space S(k2,Ξ).This experi-
ment was carried out in double precision arithmetic.

properties of bases for Sm(Ξ) were studied in detail. By fitting a line to the data in
Figure 4.1 where the exponential decay is evident, one can estimate the constants νL
and CL, which in this case are quite reasonable. For example, the value of νL, which
measures the rate of exponential decay, is observed to be close to 1.35 (see Table 4.1).

We can visualize the decay of the corresponding coefficients in the same way. We
again take the Lagrange function centered at the north pole: for each ζ′ ∈ Ξ, the
coefficient |Aξ,ζ′ | in the expansion χξ =

∑
Aξ,ζk(·, ζ) + pξ is plotted with horizontal

coordinate dist(ξ, ζ′). The results for sets of centers of size N = 900, 2500, and 10,000
are given in Figure 4.2. The exponential decay seems to follow

|Aζ,ξ| ≤ Ccq
−2 exp

(
−νc

dist(ξ, ζ)

h

)
.

Indeed, this is established later in Theorem 5.3. As before, we can estimate the
constants νc and Cc for the decay of the coefficients. Comparing Figures 4.1 and 4.2,
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0 0.5 1 1.5 2 2.5 3

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

Geodesic Distance From Center

Lagrange Coefficient Decay (40 digit arithmetic)

 

 

N=900
N=1600

Fig. 4.3. Size of the coefficients for a Lagrange function in the kernel space S(k2,Ξ). This
experiment was carried out in Maple with 40 digit arithmetic.

we note that the coefficient plot is shifted vertically. This is a consequence of the
factor of q−2 in the estimate (5.6) below. Table 4.1 gives estimates for the constants
νc and Cc, along with the constants involved in the decay of the Lagrange functions.

The perceived plateau present in the Lagrange function values as well as the
coefficients shown in Figures 4.1 and 4.2 is due purely to round-off error related to
the conditioning of kernel collocation and evaluation matrices. These results were
produced using double-precision (approximately 16 digits) floating point arithmetic.
To illustrate this point, we plot the decay rate of the Lagrange coefficients for the 900
and 1600 point node sets as computed using high-precision (40 digits) floating point
arithmetic in Figure 4.3. The figure clearly shows that the exponential decay does
not plateau, but continues as the theory predicts (see Theorem 5.3).

5. Coefficients of the full Lagrange functions. In this section we give theo-
retical results for the coefficients in the kernel expansion of Lagrange functions. In the
first part we give a formula relating the size of coefficients to native space inner prod-
ucts of the Lagrange functions themselves (this is Proposition 5.1). We then obtain
estimates for the restricted surface splines on S

2, demonstrating the rapid, stationary
decay of these coefficients.

5.1. Interpolation with conditionally positive definite kernels. In this
section we demonstrate that the Lagrange function coefficients Aξ,ζ can be expressed
as a certain kind of inner product of different Lagrange functions χξ and χζ . Because
this is a fundamental result, we work in generality in this subsection: the kernels we
consider here are conditionally positive of the type considered in section 2.2.

When u, v ∈ S(k,Ξ)—meaning that they have the expansion u =
∑

ξ∈Ξ a1,ξk(·, ξ)+
pu and v =

∑
ξ∈Ξ a2,ξk(·, ξ) + pv with coefficients (aj,ξ)ξ∈Ξ ⊥ (Π)|Ξ for j = 1, 2—the
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semiinner product is

〈u, v〉k =

〈∑
ξ∈Ξ

a1,ξk(·, ξ),
∑
ξ∈Ξ

a2,ξk(·, ξ)
〉

k

=
∑
ξ∈Ξ

∑
ζ∈Ξ

a1,ξa2,ζk(ξ, ζ).

(This follows directly from the definition (2.3) coupled with the observation that for
j /∈ J , û(j) =

∑
ξ∈Ξ a1,ξk̃(j)φj(ξ) and v̂(j) =

∑
ξ∈Ξ a2,ξk̃(j)φj(ξ).) We can use this

expression of the inner product to investigate the kernel expansion of the Lagrange
function.

Proposition 5.1. Let k(·, ξ) = ∑
j∈N

k̃(j)φj(·)φj(ξ) be a conditionally positive

definite kernel with respect to the space Π = spanj∈J φj , and let Ξ be unisolvent for
Π. Then χη ∈ S(k,Ξ) (the Lagrange function centered at η) has the kernel expansion
χη(x) =

∑
ξ∈ΞAη,ξk(x, ξ) + pζ with coefficients

Aη = (Aη,ξ)ξ∈Ξ =
(〈χζ(x), χη(x)〉k

)
ξ∈Ξ

.

Proof. Select two centers ζ, η ∈ Ξ with corresponding Lagrange functions χζ and
χη ∈ S(k,Ξ). Denote the collocation and auxiliary matrices, introduced in section 2.2,
by KΞ = (k(ξ, ζ))ζ,ξ and Φ = (φj(ξ))ξ,j . Because Aζ and Aη are both orthogonal to
(Π)|Ξ, we have

〈χζ , χη〉k =
∑
ξ1∈Ξ

∑
ξ2∈Ξ

Aζ,ξ1Aη,ξ2k(ξ1, ξ2) = 〈KΞAζ ,Aη〉�2(Ξ).

Now define P := Φ(Φ∗Φ)−1Φ∗ : 2(Ξ) → (ΠJ )|Ξ ⊂ 2(Ξ) to be the orthogonal
projection onto the subspace of samples of Π on Ξ and let P⊥ = Id − P be its
complement. Then for any data y, (2.2) yields coefficient vectors A and c satisfying
P⊥A = A and P⊥Φc = 0, and hence P⊥KΞP

⊥A = P⊥KΞA = P⊥y. Because
P⊥ : 2(Ξ) → 2(Ξ) is also an orthogonal projector, and therefore self-adjoint, it
follows that

〈χζ(x), χη(x)〉k = 〈KΞAζ ,Aη〉�2(Ξ) = 〈KΞAζ , P
⊥Aη〉�2(Ξ) = 〈P⊥KΞAζ ,Aη〉�2(Ξ)

= 〈P⊥eζ ,Aη〉�2(Ξ).

In the last line, we have introduced the sequence eζ = (δζ,ξ)ξ∈Ξ for which KΞAζ +
pζ |Ξ = eζ , which implies that P⊥KΞAζ = P⊥eζ . Using once more the fact that P⊥

is self-adjoint and that Aη is in its range, we have

〈χζ(x), χη(x)〉k,J = 〈P⊥eζ ,Aη〉 = 〈eζ , P⊥Aη〉 = 〈eζ ,Aη〉

and the lemma follows.
The next result involves estimating the norms ‖a‖�2(Ξ) and ‖c‖�2(J ), where a and

c are as in (2.2). It will be useful later, when we discuss local Lagrange functions.
The notation is the same as that used in the proof above. In addition, because k is a
conditionally positive definite kernel for Π , the matrix P⊥KΞP

⊥ is positive definite
on the orthogonal complement of the range of Φ. We will let ϑ be the minimum
eigenvalue of this matrix, that is,

ϑ := min
‖P⊥α‖=1

〈P⊥KΞP
⊥α, α〉 > 0.
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Proposition 5.2. Suppose a and c satisfy (2.2). Let GΞ = Φ∗Φ. Then,

‖a‖�2(Ξ) ≤ ϑ−1‖y‖�2(Ξ) ≤ ϑ−1
√
#Ξ‖y‖�∞(Ξ),

‖c‖�2(J ) ≤ 2‖k‖∞‖G−1
Ξ ‖1/2ϑ−1#Ξ‖y‖�2(Ξ) ≤ 2‖k‖∞‖G−1

Ξ ‖1/2ϑ−1(#Ξ)3/2‖y‖�∞(Ξ).

Proof. From (2.2) and the fact that P⊥ projects onto the orthogonal complement
of the range of Φ, we have that P⊥KΞP

⊥a = P⊥y and that P⊥a = a. Consequently,

ϑ‖a‖2�2(Ξ) = ϑ‖P⊥a‖2�2(Ξ) ≤ 〈P⊥KΞP
⊥a, a〉 ≤ ‖a‖�2(Ξ)‖P⊥y‖�2(Ξ).

The bound on ‖a‖�2(Ξ) follows immediately from this and ‖y‖�2(Ξ) ≤
√
#Ξ‖y‖�∞(Ξ).

To get the bound on ‖c‖�2(Ξ), note that Φc = Py − PKΞa and, hence, that

‖Φc‖�2(Ξ) ≤ ‖Py‖�2(Ξ) + ‖PKΞP
⊥a‖�2(Ξ) ≤ ‖Py‖�2(Ξ) + ϑ−1‖PKΞP

⊥‖‖P⊥y‖�2(Ξ).

We also have that ‖Φc‖2�2(Ξ) = 〈Φ∗Φc, c〉 ≥λmin(Φ
∗Φ)‖c‖2�2(J ). However, λmin(Φ

∗Φ) =
‖(Φ∗Φ)−1‖−1, which implies that

‖c‖�2(J ) ≤ ‖(Φ∗Φ)−1‖1/2‖Φc‖�2(Ξ) = ‖G−1
Ξ ‖1/2‖Φc‖�2(Ξ).

Next, note that the following hold: ‖PKΞP
⊥‖ ≤ ‖KΞ‖ ≤ #Ξ‖k‖∞, ‖Py‖�2(Ξ),

‖P⊥y‖�2(Ξ) ≤ ‖y‖�2(Ξ) ≤ √
#Ξ‖y‖�∞(Ξ), and

#Ξ‖k‖∞
ϑ ≥ 1. Applying these to the

inequality

‖c‖�2(J ) ≤ ‖G−1
Ξ ‖1/2(‖Py‖�2(Ξ) +#Ξ‖k‖∞ϑ−1‖P⊥y‖�2(Ξ)

)
then yields the desired bound on ‖c‖�2(J ), completing the proof.

5.2. Estimating Lagrange function coefficients. In [12], it has been shown
that Lagrange functions for restricted surface splines decay exponentially fast away
from the center. We can use these decay estimates in conjunction with Proposition 5.1
to estimate the decay of the coefficients |Aξ,ζ |.

Recall that the eigenvalues of−Δ are λ� = (+1). Let Q(z) := Πm
ν=1(z−λν−1) =∑m

ν=1 bνz
ν. The kernel km : S2 × S2 → R has the expansion

km(x, α) =

∞∑
�=0

k̃()

�∑
μ=−�

Y μ
� (x)Y μ

� (α),

where, for  ≥ m, k̃() = CmQ(λ�)
−1 with Cm = 2m+1πΓ(m)2 [18, equation 3.3].

From the expansion, one sees that km is conditionally positive definite with respect
to Πm−1. Kernels such as km are said to be of polyharmonic or related type; they
have been studied in [12]. The kernel km acts as the Green’s function for the elliptic
operator Lm := C−1

m Q(−Δ) (cf. [12, Example 3.3]), in the sense that

f =

∫
M

km(·, α)Lm

[
f(α)− pf (α)

]
dα+ pf ,

where pf is the orthogonal projection of f onto Πm−1.
The native space “inner product” on subsets. In [12] it was shown that

for any k ∈ N, the operator (∇k)∗∇k (which involves (∇k)∗ the adjoint—with respect
to the L2(S

2) inner product—of the covariant derivative operator ∇k, which was

D
ow

nl
oa

de
d 

12
/0

2/
13

 to
 1

32
.1

78
.2

.6
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOCALIZED BASES FOR KERNEL SPACES 2549

introduced in section 2.1) can be expressed as
∑k

ν=0 dνΔ
ν with dk = (−1)k. Conse-

quently, any operator of the form
∑k

j=0 cj(∇j)∗∇j can be expressed as
∑k

ν=0 dνΔ
ν

with dk = (−1)kck and vice-versa:
(5.1)

∀(d0, . . . dm) ∃(c0, . . . , cm) with dm = (−1)mcm and

m∑
ν=0

dνΔ
ν =

m∑
j=1

cj(∇j)∗∇j .

Because Lm = C−1
m Q(−Δ), it follows that Lm =

∑m
j=0 cj(∇j)∗∇j with cm = C−1

m ,
and so the native space semiinner product, introduced in (2.3), can be expressed as

〈u, v〉km = 〈Lmu, v〉L2(S2) =

∫
S2

β(u, v)xdμ(x)

with β(u, v)x =
∑m

k=0 ck〈∇ku,∇kv〉x and c0, . . . , cm the appropriate constants guar-
anteed by (5.1). The latter expression allows us to extend naturally the native space
inner product to measurable subsets Ω of S2. Namely,

〈u, v〉Ω,km :=

∫
Ω

β(u, v)xdμ(x).

This has the desirable property of set additivity: for sets A and B with μ(A∩B) = 0,
we have 〈u, v〉A∪B,km = 〈u, v〉A,km + 〈u, v〉B,km . Unfortunately, since some of the
coefficients ck may be negative, β(u, u) and 〈u, u〉Ω,km may assume negative values
for some u: in other words, the bilinear form (u, v) �→ 〈u, v〉Ω,km is only an indefinite
inner product.

A Cauchy–Schwarz type inequality. When restricted to the cone of functions
in Wm

2 (Ω) having a sufficiently dense set of zeros, the quadratic form 〈u, u〉Ω,km is
positive definite. We now briefly discuss this.

When Ω has Lipschitz boundary and u has many zeros, we can relate the quadratic
form |||u|||2Ω,km

:= 〈u, u〉Ω,km to a Sobolev norm ‖u‖2Wm
2 (Ω). Arguing as in [12, (4.2)],

we see that

cm|u|2Wm
2 (Ω)−

(
max

j≤m−1
|cj |

)
‖u‖2

Wm−1
2 (Ω)

≤
∫
Ω

β(u, u)xdμ(x) ≤
(
max
j≤m

|cj |
)
‖u‖2Wm

2 (Ω).

If u|Ξ = 0 on a set Ξ with h(Ξ,Ω) ≤ h0 with h0 determined only by the boundary of
Ω (specifically the radius and aperture of an interior cone condition satisfied by ∂Ω),
Theorem A.11 of [12] guarantees that ‖u‖2

Wm−1
2 (Ω)

≤ Ch2|u|2Wm
2 (Ω) with C depending

only on the order m and the roughness of the boundary. (In this case, depending only
on the aperture of the interior cone condition.) Thus, by choosing h ≤ h∗, where h∗

satisfies the two conditions

(5.2) h∗ ≤ h0 and C(h∗)2 × (
max
j≤m

|cj |
) ≤ |cm|

2
,

we have

cm
2
‖u‖2Wm

2 (Ω) ≤ |||u|||2Ω,km
≤

(
max
j≤m

|cj |
)
‖u‖2Wm

2 (Ω).

The threshold value h∗ depends on the coefficients cj as well as the radius RΩ and
aperture φΩ of the cone condition for Ω. When Ω is an annulus of sufficiently small
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inner radius, the cone parameters can be replaced by a single global constant, and
h∗ can be taken to depend only on c0, . . . , cm, in other words, only on km—cf. [12,
Corollary A.16].

A direct consequence of this is positive definiteness for such functions, |||u|||Ω,km
≥ 0

with equality only if u|Ω = 0. From this, we have a version of the Cauchy–Schwarz
inequality: if u and v share a set of zeros Z (i.e., u|Z = v|Z = {0}) that is sufficiently
dense in Ω, then

(5.3) |〈u, v〉Ω,km | ≤ |||u|||Ω,km
|||v|||Ω,km

follows (sufficient density means that h(Z,Ω) < h∗ as above).
Decay of Lagrange functions. [12, Lemma 5.1] guarantees that the Lagrange

function χξ satisfies the bulk chasing estimate: there is a fixed constant 0 ≤ ε < 1 so
that for radii r the estimate

‖χξ‖Wm
2 (Bc(ξ,r)) ≤ ε‖χξ‖Wm

2 (Bc(ξ,r− h
4h0

))

holds. In other words, a fraction (roughly 1−ε) of the bulk of the tail ‖χξ‖Wm
2 (Bc(ξ,r))

is to be found in the annulus B(ξ, r)\B(ξ, r− h
4h0

) of width h
4h0

∝ h (with a constant

of proportionality 1
4h0

that depends only on m). For r > 0, it is possible to iterate

this n times, provided n h
4h0

≤ r. It follows that there is ν = −4h0 log ε > 0 so that

‖χξ‖Wm
2 (Bc(ξ,r)) ≤ εn‖χξ‖Wm

2 (S2) ≤ Ce−νr/h‖χξ‖Wm
2 (S2).

By [12, (5.1)]3 we have

(5.4) ‖χξ‖Wm
2 (Bc(ξ,r)) ≤ Cq1−me−ν r

h .

This leads us to our main result.
Theorem 5.3. Let ρ > 0 be a fixed mesh ratio. There exist constants h∗, ν,

and C depending only on m and ρ so that if h ≤ h∗, then the Lagrange function
χζ =

∑
ξ∈Ξ Aζ,ξkm(·, ξ) + pζ ∈ Sm(Ξ) has the following properties:

|χξ| ≤ C exp

(
−ν

dist(x, ξ)

h

)
,(5.5)

|Aζ,ξ| ≤ Cq2−2m exp

(
−ν

dist(ξ, ζ)

h

)
,(5.6)

c1q
2/p‖a‖�p(Ξ) ≤

∥∥∥∥∥∑
ξ∈Ξ

aξχξ

∥∥∥∥
Lp(S2)

≤ c2q
2/p‖a‖�p(Ξ).(5.7)

Proof. The bounds (5.5) and (5.7) are given in [12, Theorems 5.3 and 5.7]. Only
(5.6) requires proof. By Proposition 5.1 and set additivity, we have that

Aζ,ξ = 〈χξ, χζ〉km = 〈χξ, χζ〉Ωζ ,km + 〈χξ, χζ〉Ωξ,km ,

where we use the decomposition into hemispheres: Ωζ = {α ∈ S2 | dist(α, ζ) <
dist(α, ξ)}, Ωξ = {α ∈ S2 | dist(α, ξ) < dist(α, ζ)}, and (modulo a set of measure
zero) S2 \ Ωζ = Ωξ.

3This is simply a comparison of χξ to a smooth “bump” φξ of radius q—also an interpolant to
the delta data (δξ), but worse in the sense that

∣
∣
∣
∣
∣
∣χξ

∣
∣
∣
∣
∣
∣
km

≤ |||φ|||km
. This idea is repeated in the proof

of Theorem 5.3.
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We apply the Cauchy–Schwarz type inequality (5.3) to obtain

|Aζ,ξ| ≤ |||χζ |||Ωζ ,km
|||χξ|||Ωζ ,km

+ |||χζ |||Ωξ,km
|||χξ|||Ωξ,km

≤
√
max
j≤m

|cj |
(
‖χζ‖Wm

2 (Ωζ) |||χξ|||Ωζ ,km
+ |||χζ |||Ωξ,km

‖χξ‖Wm
2 (Ωξ)

)
.

Since Ωζ ⊂ Bc(ζ, r) := S2 \ B(ζ, 1
2dist(ξ, ζ)) and Ωξ ⊂ Bc(ξ, r), we can again

employ set additivity and positive definiteness (this time |||χξ|||Ωζ ,km
≤ |||χξ|||S2,km

,

which follows from the fact that S2 = Ωζ ∪ Ωξ and that χξ vanishes to high order in
Ωξ—the same holds for χζ) to obtain

|Aζ,ξ| ≤
√
max
j≤m

|cj |
(
‖χζ‖Wm

2 (Bc(ζ,r)) |||χξ|||km
+ |||χζ |||km

‖χξ‖Wm
2 (Bc(ξ,r))

)
.

The full energy of the Lagrange function can be bounded by comparing it to
the energy of a bump function—for χξ this is φξ, which can be defined by using a
smooth cutoff function σ. In spherical coordinates (colatitude, longitude) around ξ,
φξ(θ, ϕ) = σ(θ/q). This is done in [12, (5.1)] and we have that |||χξ|||km

and |||χζ |||km

are bounded by Cq1−m.
On the other hand, to treat ‖χζ‖Wm

2 (Bc(ζ,r)) and ‖χξ‖Wm
2 (Bc(ζ,r)), we can use

(5.4), which gives

‖χξ‖Wm
2 (Bc(ζ,r)), ‖χζ‖Wm

2 (Bc(ζ,r)) ≤ Cq1−me−ν r
h = Cq1−me−ν dist(ξ,ζ)

2h .

The bound (5.6) follows immediately from this.
Remark 5.4. Because the proof doesn’t really depend on S

2, a nearly identical
proof works for any of the kernels with exponentially decaying Lagrange functions
considered in [11, 12]. Specifically, we have this: Theorem 5.3 holds for compact, two-
point homogeneous spaces with polyharmonic kernels satisfying Lm ⊥ Π (cf. [12])
and for any compact, C∞ Riemannian manifold, with the kernels being the Sobolev
splines given in [11].

6. Truncating the Lagrange basis. We now discuss truncating the kernel
expansion Lagrange function χξ =

∑
ζΞAξ,ζkm(·, ζ) + pξ ∈ Sm(Ξ), replacing it with

an expansion of the form

(6.1) χ̃ξ =
∑

ζ∈Υ(ξ)

Ãξ,ζkm(·, ζ) + pξ ∈ Sm(Ξ),

where Υ(ξ) ⊂ Ξ is a set of centers contained in a ball B(ξ, r(h)) centered at ξ, where

r(h) and the Ãξ,ζ ’s will be determined by Aξ,ζ with ζ ∈ Υ(ξ). We also assume that
ξ ∈ Υ(ξ). Finally, to avoid notational clutter, we will simply use Υ rather than Υ(ξ).

Our goal is to show that if χξ satisfies the properties (5.5), (5.6), and (5.7), then
we may take r(h) = Kh| log(h)| with K = K(m) > 0, while maintaining algebraic
decay in h of the error ‖χ̃ξ −χξ‖∞. For this choice of r(h), a simple volume estimate
(given at the end of section 6.3) shows that the number of terms required for χ̃ξ is
just O((logN)2) � N , far fewer than the N needed for χξ.

Simply truncating at a fixed radius r(h) = Kh| log(h)| is not suitable, however,
because the truncated function χ̃ξ will no longer be in the space Sm(Ξ) (and thus
{χ̃ξ} will not act as a basis). To treat this, we must slightly realign coefficients to
satisfy the moment conditions.
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A remark before proceeding with the analysis: Finding χ̃ξ in the way described
below requires knowing the expansion for χξ and carrying out the truncation above.
This is expensive, although it does have utility in terms of speeding up evaluations for
interpolation when the same set of centers is to be used repeatedly. The main point
is that we now know roughly how many basis elements are required to obtain a good
approximation to χξ. The question of producing a good basis efficiently is left to the
next section.

6.1. Constraint conditions on the coefficients. We would like χ̃ξ to be in

the space Sm(Ξ), and so the Ãξ,ζ ’s have to satisfy the constraints in the system (2.2):

(6.2)
∑
ζ∈Υ

Ãξ,ζφj(ζ) = 0, j ∈ J := (1, . . . ,m2),

where {φj}m2

j=1 is an orthonormal basis for Πm−1. Since the original χξ’s are in Sm(Ξ),
the Aξ,ζ ’s in their expansions satisfy the constraint equations in (2.2). Splitting these
equations into sums over Υ and its complement in Ξ and manipulating the result, we
see that

(6.3)
∑
ζ∈Υ

Aξ,ζφj(ζ) + σj , where σj :=
∑
ζ �∈Υ

Aξ,ζφj(ζ), j ∈ J .

The way that we will relate the two sets of coefficients is to define the vector (Ãξ,ζ)ζ∈Υ

to be the orthogonal projection of (Aξ,ζ)ζ∈Υ onto the constraint space, which is the
orthogonal complement of span{φj |Υ , j ≤ m2}, in the usual inner product for 2(Υ).
The equations below then follow:

(6.4)

(Ãξ,ζ)ζ∈Υ − (Aξ,ζ)ζ∈Υ =
∑
j∈J

τjφj |Υ ∈ span{(φj(ζ))ζ∈Υ, j ≤ m2},

‖(Ãξ,ζ)ζ∈Υ − (Aξ,ζ)ζ∈Υ‖2�2(Υ) = τ∗GΥτ, [GΥ]k,j :=
∑
ζ∈Υ

φk(ζ)φj(ζ),

where τ is a column vector having the τj ’s as entries. Let σ be a column vector with
the σj ’s as entries. From the first equation above together with (6.2) and (6.3), τ
and σ are related by σ = GΥτ . If we make the rather mild assumption that Υ is
unisolvent for the space Πm−1, then we can invert GΥ: τ = G−1

Υ σ, thereby obtaining
τ∗GΥτ = σ∗G−1

Υ σ. Using this in (6.4) and applying Schwarz’s inequality, we obtain
the following bound:

(6.5)

∥∥∥∥∑
ζ∈Υ

(Ãξ,ζ −Aξ,ζ)km(·, ζ)
∥∥∥∥
∞

≤
√
#Υ ‖G−1

Υ ‖2 ‖km‖∞‖σ‖2,

which we will make use of to establish the estimates below.
Proposition 6.1. Assume that Υ is unisolvent for Πm−1 and that ‖G−1

Υ ‖2 =
O(| log h|−2 h−2μ) for some μ ≥ 0. If we take r(h) = Kh| log(h)|, where K is chosen
so that J := Kν − 2m− μ > 0, then for h sufficiently small,

‖χ̃ξ − χξ‖∞ ≤ ChJ ,(6.6)

|χ̃ξ(x)| ≤ C
(
1 + dist(x, ξ)/h

)−J
.(6.7)
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Furthermore, when J > 2, the set {χ̃ξ} is Lp stable: there are C1, C2 > 0 for which

(6.8) C1q
2/p‖a‖�p(Ξ) ≤

∥∥∥∥∑
ξ∈Ξ

aξχ̃ξ

∥∥∥∥
Lp(S2)

≤ C2q
2/p‖a‖�p(Ξ).

Proof. From (5.6) and N ≤ 4π/vol(B(ξ, q)) ≤ Cq−2, we have that

(6.9)
∑
ζ �∈Υ

|Aξ,ζ | = O(
Nq2−2m exp(−νr(h)/h)

) ≤ ChKν−2m.

Applying it to the σj ’s defined in (6.3) results in ‖σ‖2 ≤ ChKν−2m. Using this in
connection with (6.5), ‖G−1

Υ ‖2 = O(| log h|−2 h−2μ), (6.9), and

χ̃ξ − χξ =
∑
ζ∈Υ

(Ãξ,ζ −Aξ,ζ)km(·, ζ) −
∑
ζ �∈Υ

Aξ,ζkm(·, ζ)

yields (6.6). Next, from (5.5) we have

|χξ| ≤ C exp

(
−ν

dist(x, ξ)

h

)
≤ C exp

(
−Kν

dist(x, ξ)

Kh

)
≤ C

(
1 +

dist(x, ξ)

Kh

)−Kν

.

Combining this with (6.6), using J = Kν − 2m− μ > 0, and manipulating, we arrive
at (6.7).

It remains to demonstrate the Lp stability of (χ̃ξ) for 1 ≤ p ≤ ∞. When p = 1,
we consider a sequence a = (aξ)ξ∈Ξ ∈ 1(Ξ). Let s :=

∑
aξχξ and s̃ :=

∑
aξχ̃ξ. From

Hölder’s inequality and (6.6), we have ‖s̃− s‖L1(S2) ≤ C‖a‖�1(Ξ)h
J and

‖s̃− s‖L∞(S2) ≤ C‖a‖�∞(Ξ)

∑
ξ∈Ξ

|χ̃ξ(x) − χξ(x)|︸ ︷︷ ︸
≤N maxξ ‖χ̃ξ−χξ‖L∞(S2)

≤ C‖a‖�∞(Ξ)h
Jq−2.

Interpolating between these two inequalities—i.e., interpolating the finite rank oper-
ator a �→ (s− s̃)—gives

‖s− s̃‖Lp(S2) ≤ ChJq−2(1−1/p)‖a‖�p(Ξ)

≤ ChJ−2q2/p‖a‖�p(Ξ). (q−2 ∼ h−2).

After some manipulation, this bound and (5.7) imply that

c1q
2/p‖a‖�p(Ξ)(1− ChJ−2) ≤ ‖s̃‖Lp(S2) ≤ c2q

2/p‖a‖�p(Ξ)(1 + ChJ−2).

Choosing h so that ChJ−2 ≤ 1/2 and letting C1 = c1/2 and C2 = 3c2/2, we obtain
(6.8).

Remark 6.2. When there are no constraint conditions on the coefficients, this
result holds for any of the strictly positive definite kernels mentioned in Remark 5.4.
In particular it holds for Sobolev splines on a compact C∞ Riemannian manifold.

6.2. Norm of the inverse Gram matrix. We now demonstrate that the con-
ditions on G−1

Υ in Proposition 6.1 are automatically satisfied. We will state and prove
the results below for caps on Sd, rather than just S2. Also, it is more convenient to
use with ΠL rather than Πm−1, because m is notationally tied to the polyharmonic
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kernels km as well as the spherical harmonics on S2. That said, we begin with the
lemma below.

Lemma 6.3. Suppose that Sr := B(ξ, r) ⊂ Sd is a cap of fixed radius r < π, and
that C ⊂ Sr is finite and has mesh norm hC := hSr,C . In addition, let L ≥ 0 be a
fixed integer and take ΠL to be the space of all spherical harmonics of degree at most
L. Then, there exists a constant c0 := c0(d, L) > 0 such that when hC ≤ c0r we have

(6.10)
∑
ζ∈C

|ϕ(ζ)|2 ≥ μ(Sr)
−1

∫
Sr

|ϕ(x)|2dμ(x) ∀ϕ ∈ ΠL.

Moreover, the set C is unisolvent for ΠL. Finally, for every basis for ΠL the cor-
responding Gram matrices GC and GSr , relative to the inner products on 2(C ) and
Sr, respectively, satisfy

(6.11) ‖G−1
C ‖2 ≤ μ(Sr)‖G−1

Sr
‖2.

Proof. Since ϕ(x) and ϕ(x) are spherical harmonics in ΠL, their product is a
spherical harmonic of degree at most 2L. Thus, applying the nonnegative-weight
quadrature formula in [17, Theorem 2.1] to spherical harmonics of order 2L yields

∑
ζ∈C

wζ |ϕ(ζ)|2 =

∫
Sr

|ϕ(x)|2dμ(x).

Since 0 ≤ wζ ≤ ∑
ζ∈C wζ = μ(Sr), we have

∑
ζ∈C wζ |ϕ(ζ)|2 ≤ μ(Sr)

∑
ζ∈C |ϕ(ζ)|2.

The inequality (6.10) follows immediately from the quadrature formula. To prove
that C is unisolvent, suppose that ϕ ∈ ΠL vanishes on C. By (6.10), we have that∫
Sr

|ϕ(x)|2dμ(x) = 0. Since ϕ is in ΠL, it is a polynomial in sines and cosines of

the angles used in the standard parameterization of Sd with ξ being the “north”
pole. As a consequence, it is continuous on Sr and, because

∫
Sr

|ϕ(x)|2dμ(x) =
0, it is identically 0 on Sr. Finally, as a function of the angular variables in the
complex plane, it is analytic, entire in fact, and can be expanded in a power series
in these variables. The fact that it vanishes identically for real values of the angular
variables is enough to show that the coefficients in the series are all zero. Hence,
ϕ ≡ 0 on Sd and C is unisolvent for ΠL. To establish (6.11), note that (6.10) implies
that GC − μ(Sr)

−1GSr is positive semidefinite. From the Courant–Fischer theorem,
the lowest eigenvalue of GC is greater than that of μ(Sr)

−1GSr . This inequality
then yields (6.11), since these eigenvalues are ‖G−1

C ‖−1
2 and μ(Sr)‖G−1

Sr
‖−1
2 , respec-

tively.
We now need to compute the Gram matrix for the canonical basis of ΠL. This

basis is described in [26, Chapter IX, section 3.6] and consists of spherical harmonics.
Let , k1, . . . , kd−1 be integers satisfying  ≥ k1 ≥ k2 ≥ · · · ≥ kd−1 ≥ 0, and take
K := (k1, . . . ,±kd−1). A spherical harmonic of degree  [26, p. 466]) will be denoted
by Y �

K(θ1, . . . , θd). The angles are the usual ones from spherical coordinates in Rd+1

(cf. [26, p. 435]). The basis for ΠL is then the set of all Y �
K , 0 ≤  ≤ L. The entries in

the Gram matrix are [GSr ](�,K),(�′,K′) = 〈Y �
K , Y �′

K′〉Sr . Following the argument in [26,
Chapter IX, section 3.6], one may show that
(6.12)

〈Y �
K , Y �′

K′〉Sr = B�,KB�′,KδK,K′

∫ r

0

C
d−1
2 +k1

�−k1
(cos θ)C

d−1
2 +k1

�′−k1
(cos θ) sin2k1+d−1 θdθ,
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where Cs
n(t) is the Gegenbauer polynomial of degree n and type s, and B�,k1 is a

normalization factor. In the case where d = 2 and L = 1, GSr is 4 × 4 and has six
nonzero entries,

G(0,0),(0,0) =
1

2
(1− cos r), G(0,0),(1,0) = G(1,0),(0,0) =

√
3

4
(1− cos r)(1 + cos r),

G(1,0),(1,0) =
1

2
(1− cos r)(1 + cos r + cos2 r), G(1,±1),(1,±1) =

1

4
(1− cos r)2(2 + cos r).

Since μ(Sr) = 2π(1−cos r), the formulas for the entries above imply that GSr/μ(Sr) is
a polynomial in cos r. In fact, a straightforward calculation shows that the minimum
eigenvalue of this matrix is r4/(256π)+O(r6). Lemma 6.3 then implies that ‖G−1

C ‖2 ≤
μ(Sr)‖G−1

Sr
‖2 = 256πr−4 + O(r−2). A less precise, but similar result, holds in the

general case.
Lemma 6.4. Under the assumptions of Lemma 6.3, for general L ≥ 0, d ≥ 2, and

r sufficiently small, there is an integer ι = ι(L, d) ≥ L and a constant C = C(L, d) > 0
such that ‖G−1

C ‖2 ≤ Cr−2ι. For L = 1 and d = 2, we may take ι = 2.
Proof. From the expression in (6.12) for the entries in GSr , we see that each of

them is entire in r and has a zero of order d or greater at r = 0. In addition, μ(Sr) is

also entire in r and has a zero of order d. It follows that the matrix G̃(r) = GSr/μ(Sr)
is entire, even in r, and for real r, it is real, self-adjoint, and positive semidefinite.
(In fact, for d even, it is a polynomial in cos r.) In addition, the 2 × 2 block in G̃(0)
corresponding to k1 = 0,  = 0, 1, is rank 1 and therefore has 0 as an eigenvalue;
consequently, G̃(0) also has 0 as an eigenvalue—it’s lowest, in fact. As Rellich [21,

p. 91] shows, the eigenvalues of G̃(r) are analytic functions of r. For r > 0, these
eigenvalues are proportional to those of the Gram matrix GSr and therefore must be
positive. None of these eigenvalues are identically 0. In particular, the eigenvalues
splitting off from the 0 eigenvalue of G̃(0) are not identically 0. As functions of r they

thus have a zero of finite order at r = 0; the order is an even integer because G̃(r)
is even in r. The smallest eigenvalue then behaves like λmin(r) = r2ι(a0 + O(r2)),
where a0 > 0, ι > 0 is an integer and r is sufficiently small. Furthermore, from (6.12)
we see that the diagonal entry, with  = ′ = k1 = L, is O(r2L). Since this bounds
the minimum eigenvalue from above, we must have 2ι ≥ 2L, so ι ≥ L. The result
then follows from Lemma 6.3 and the observation that μ(Sr)‖G−1

Sr
‖2 = λ−1

min. The
calculation for L = 1 and d = 2 was done above.

6.3. Local Lagrange bases. We now turn to the local Lagrange basis. Recall
that the function χ̌ξ ∈ Sm(Ξ), with the kernel representation

(6.13) χ̌ξ =
∑
ζ∈Υ

Ǎξ,ζkm(·, ζ) +
m2∑
j=1

b̌jφj ∈ Sm(Ξ),

is a local Lagrange function centered at ξ if it satisfies χ̌ξ|Υ = eξ, where eξ(ζ) = δξ,ζ ,
that is, eξ is the vector (1, 0, . . . , 0)T . Since χ̌ξ ∈ Sm(Ξ), the vector Ǎξ = (Ǎξ,ζ)ζ∈Υ

is in the constraint space. This vector and the coefficients b̌j then satisfy χ̌ξ|Υ = eξ.

Of course, the (full) Lagrange function χξ =
∑

ζ∈ΞAξ,ζκ(·, ζ) +
∑m2

j=1 bjφj restricted

to Υ also satisfies χξ|Υ = eξ. Consequently, Dξ := χ̌ξ − χξ satisfies Dξ|Υ = 0. We
can rewrite this difference as Dξ = χ̌ξ − χ̃ξ + χ̃ξ − χξ (with χ̃ξ the truncated basis
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function introduced in the last section). It follows that

Dξ =
∑
ζ∈Υ

(Ǎζ − Ãζ︸ ︷︷ ︸
αζ

)κ(·, ζ) +
#J∑
j=1

(b̌j − bj︸ ︷︷ ︸
βj

)φj

︸ ︷︷ ︸
χ̌ξ−χ̃ξ

+χ̃ξ − χξ.

Evaluating this on Υ then gives the system KΥα+Φβ+(χ̃ξ−χξ)|Υ = 0. By linearity,
it is clear that Φ∗α = 0. Finally, letting y = (χξ − χ̃ξ)|Υ, we arrive at the system

(6.14)

(
KΥ Φ
Φ∗ 0

)(
α
β

)
=

(
y
0

)
.

Proposition 5.2 applies to (6.14) with Ξ replaced by Υ; thus, noting that ‖y‖�∞(Υ) ≤
‖χ̃ξ − χξ‖∞, and writing J = (1, . . . ,m2), we see that

‖α‖�2(Υ) ≤ ϑ−1
√
#Υ‖χ̃ξ − χξ‖∞,

‖β‖�2(J ) ≤ 2‖km‖∞‖G−1
Υ ‖1/2ϑ−1(#Υ)3/2‖χ̃ξ − χξ‖∞.

From this we obtain the following inequalities:

‖χ̌ξ − χ̃ξ‖∞ ≤ ‖km‖∞
√
#Υ‖α‖�2(Υ) +mCm‖β‖�2(J ), Cm = max

j≤m2
‖φj‖∞

≤ ‖km‖∞#Υϑ−1

(
1 + 2mCm

√
#Υ‖G−1

Υ ‖
)
‖χ̃ξ − χξ‖∞.

Moreover, using ‖χ̌ξ − χξ‖∞ ≤ ‖χ̌ξ − χ̃ξ‖∞ + ‖χξ − χ̃ξ‖∞, we see that

(6.15) ‖χ̌ξ − χξ‖∞ ≤ 2‖km‖∞#Υϑ−1

(
1 + 2mCm

√
#Υ‖G−1

Υ ‖
)
‖χ̃ξ − χξ‖∞.

Finally, from Proposition 6.1, if K > (2m+ 2μ)/ν, it is easy to see that this holds:

(6.16) ‖χ̌ξ − χξ‖∞ ≤ C
| log h|2

ϑ

(
1 +mh−μ

)
hKν−2m−μ ≤ C

| log h|2
ϑ

hKν−2m−2μ.

To proceed further, we need to estimate ϑ. Such estimates are known for surface
splines in the Euclidean case [20, section 6]. Simply repeating the proofs of [20,
Corollary 2.2] and [20, Theorem 2.4] for a set of points in R3 restricted to S2 yields
the desired estimate. For the collocation matrix associated with km and Ξ, we have

(6.17) ϑ ≥ Cq2m−2,

where C depends only on m.4 Thus, for km, we have ‖χ̌ξ − χξ‖∞ ≤ ChKν−4m+2−2μ,
where the constant K has to be increased slightly to absorb | log h|2. With this in
mind we have the following result, whose proof, being similar to Proposition 6.1, we
omit.

4For any d-dimensional sphere or projective space and any conditionally positive definite poly-
harmonic kernel with associated polynomial operator Lm = Q(−Δ), where Q is a polynomial of
degree m, the coefficients in the expansion for km are given by k̃(j) = Q(λj)−1, j �∈ J . For large

λj , all of these have the asymptotic behavior λ−m
j , which is the same as that of the coefficients for

the m-d thin-plate spline. This implies that the matrix P⊥KΥP⊥ in Proposition 5.2 (here, Ξ → Υ)
will have a lowest eigenvalue value, that is, up to a constant multiple, dependent only on m and d.
Consequently, the bound ϑ ≥ Cq2m−d holds for all km associated with Lm in dimension d.
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Theorem 6.5. Let the notation and assumptions of Theorem 5.3 hold. Suppose
that K > 0 is chosen so that K > 4m−2+2μ

ν and, for each ξ ∈ Ξ, Υ(ξ) := Ξ ∩
B(ξ,Kh| log h|). If χ̌ξ is a local Lagrange function for Υ(ξ) centered at ξ, then set
{χ̌ξ}ξ∈Ξ is a basis for Sm(Ξ). Moreover, with J := Kν − 4m+ 2− 2μ, we have

‖χ̌ξ − χξ‖∞ ≤ C hJ ,(6.18)

|χ̌ξ(x)| ≤ C
(
1 + dist(x, ξ)/h

)−J
.(6.19)

Furthermore, when J > d, the set {χ̌ξ} is Lp stable: there are C1, C2 > 0 for which

(6.20) C1q
2/p‖a‖�p(Ξ) ≤

∥∥∥∥∑
ξ∈Ξ

aξχ̌ξ

∥∥∥∥
Lp(S2)

≤ C2q
2/p‖a‖�p(Ξ).

Quasi-interpolation. It follows that the operator

QΞf =
∑
ξ∈Ξ

f(ξ)χ̌ξ

provides L∞ convergence at the same asymptotic rate as interpolation IΞ. Indeed,

|IΞf(x)−QΞf(x)| ≤
∑
ξ∈Ξ

|χ̌ξ(x)−χξ(x)||f(ξ)| ≤ Cq−2‖f‖∞hKν−4m−2μ ≤ C‖f‖∞h2m

provided that K > 6m+2μ+2
ν . It is shown in [12, Corollary 5.9] that restricted surface

spline interpolation exhibits ‖IΞf − f‖∞ ≤ Chσ for f ∈ C2m(S2) when σ = 2m and
for f ∈ Bσ∞,∞(S2) for σ < 2m. So QΞ has the same rate of approximation (without
needing to solve a large system of equations).

Constructing basis functions in terms of N . For a set of scattered points
Ξ it is possible, in fact often desirable, to use N as the basic parameter instead of h.
Therefore we wish to express the number of nearest neighbors needed as a function of
the total cardinality N instead of those within a Kh| logh| neighborhood. Consider
a cap B(α, r). A simple volume argument gives

(6.21) #(B(α, r) ∩ Ξ) ≤ 36

11

(
r

q

)2

.

Indeed, one arrives at this bound by first considering caps of radius q around each
node in B(α, r). If q is small enough, say, q < r, then at least 1/3 the volume
of each cap will be contained in B(α, r). Using this and a Taylor expansion of
the volume formula 2π(1 − cos(q)) leads to (6.21). Thus, the greatest number of
points in a cap of radius Kh| logh| is 36

11ρ
2(K| log(h)|)2. Also, it is not hard to

show that 2h−2 ≤ N, and hence it follows that the number of points is bounded
by 36

11ρ
2(K2 log(N))2 = 9

11 (ρK)2(log(N))2, and it suffices to take for Υ the nearest
9
11 (ρK)2(log(N))2 neighbors.

As a final remark, we point out that bound on n := #Υ derived above is pes-
simistic. To see why, suppose that ρ is large, but only a few points are roughly 2q
apart, with the other points being on the order of 2h apart. The number of points
in the disk of radius Kh| log(h)| will still be n ∼ K2(log(N))2. Any dependence on
ρ will be weak, and certainly not O(ρ2). The important point to be made here is
that, with weak ρ dependence, n depends chiefly on the kernel used and the number
of points in Ξ. This is born out in the results of numerical experiments we conducted,
where we used n = 7(log(N))2. See Table 7.1.
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The constants ν and K. Before we turn to a discussion of preconditioning, we
wish to comment on the constants ν and K above. These two constants come into
play in a crucial way in many of our estimates.

The decay constant ν first comes up in the proof of Theorem 5.3. (Although we do
not mention it in the theorem, the proof produces two different decay constants: νL
and νC , the former for the Lagrange function and the latter for the coefficients.) The
estimate for ν is, of course, a lower bound on the decay constant itself; it is independent
of ρ, but weakly dependent on m. Because of the nature of such estimates, it is very
likely that they are much lower than νactual. How νactual behaves as a function of ρ is
an open question.

There is another open question concerning K. We know that it must be bounded
below by 4m−2+2μ

ν . Thus a better estimate on ν would produce a better lower bound
on K. This in turn means using smaller caps and fewer points in constructing the
local Lagrange interpolant—i.e., giving it a smaller “footprint.” On the other hand,
the larger we make K the better the approximation to χξ we get. Since K can be
made as large as we please, the question then becomes this: What is an optimal choice
for K? Indeed, what does the term optimal mean here?

7. Preconditioning with local Lagrange functions. In this section we illus-
trate how the local Lagrange functions can also be used as an effective preconditioner
for linear systems associated with interpolation using the standard restricted spline
basis. Our focus is on the restricted surface spline k2 (i.e., the restricted thin plate
spline), for which the interpolant to f |Ξ in the standard basis takes the form

IΞf =
∑
ξ∈Ξ

aξk2(·, ξ) +
4∑

j=1

cjφj(·),(7.1)

where φj are a basis for the spherical harmonics of degree ≤ 1. We note that this
interpolant can also be written with respect to the local Lagrange basis for S2(Ξ) as

IΞf =
∑
ξ∈Ξ

ǎξχ̌ξ(·);(7.2)

see section 3 for the details on constructing this basis.
Using the properties of the local Lagrange basis, we can write the linear system

for determining the interpolation coefficients ǎξ in (7.2) as

(7.3)
[
KΞ Φ

] [AΥ

CΥ

] [
ǎ
]
=

[
f
]
,

where (KΞ)i,j = k2(ξi, ξj), i, j = 1, . . . , N , and Φi,j = φj(ξi), i = 1, . . . , N , j =
1, . . . , 4. The matrix AΥ is an N -by-N sparse matrix where each column contains
n = M(logN)2 entries corresponding to the values of the interpolation coefficients
Aξ,ζ for the local Lagrange basis in (3.2). The matrix CΥ is a 4-by-N matrix with
each column containing the values of the interpolation coefficients cξ,j in (3.2). With
the linear system written in this way, one can view the matrix [AΥ CΥ]

T as a right
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preconditioner for the standard kernel interpolation matrix. Once ǎ is determined
from (7.3), we can then find the interpolation coefficients aξ and cj in (7.1) from

[a c]T = [AΥ CΥ]
T ǎ.(7.4)

If the local Lagrange basis decays sufficiently fast then the linear system (7.3)
should be “numerically nice” in the sense that the matrix KΞAΥ +ΦCΥ should have
decaying elements from its diagonal and should be well conditioned. As discussed
in the previous section, the decay is controlled by the number of nearest neighbors n
used in constructing each local Lagrange function and that n = M(logN)2. In the ex-
periments below, we found that choosing n = 7�(logN)2/(log 10)2)� = 7�(log10 N)2�
gave very good results over several decades of N .

To solve the preconditioned linear system (7.3) we will use the generalized min-
imum residual method (GMRES) [23]. This is a Krylov subspace method which is
applicable to non-symmetric linear systems and only requires computing matrix-vector
products. Each matrix-vector product involving the preconditioner matrix [AΥ CΥ]

T

requires O(N(logN)2) operations, while each matrix-vector product involving [KΞ Φ]
requires O(N2) operations. However, Keiner, Kunis, and Potts have shown that
this latter product can be done in O(N logN) operations using fast algorithms for
spherical Fourier transforms [14]. As we are primarily interested in the exploring the
effectiveness of the local Lagrange basis as a preconditioner, we have not used these
fast algorithms in the results below. In a followup study, we will investigate these fast
algorithms in combination with the preconditioner in much more detail.

For the first numerical experiment we test the preconditioner on two different
families of node sets Ξ ⊂ S2 of increasing cardinality. The first is the icosahedral family
of nodes, which are quasi-uniformly distributed over the sphere with a small mesh
ratio (at least for the sizes we consider). These nodes are popular in computational
geosciences (see, for example, [10, 24, 22, 16]) where interpolation between node sets
is often required. The second family of nodes we use are the Hammersley nodes,
which are formed by transformed van der Corput sequences and provide so-called low
discrepancy sequences on the sphere (see [5] for more details). While these nodes are
equidistributed over the sphere, they are not quasi-uniform, and the mesh ratio can
be quite large. They are thus not covered by the above theory. However, we have
included them to illustrate how the preconditioner may perform on less uniform data.
Additionally, low discrepancy sequences like the Hammersley nodes are also popular
for numerical tests of kernel methods [6].

Table 7.1 displays the number of GMRES iterations required to compute an ap-
proximate solution to the linear systems (7.3) for these two node families using various
values of N and different tolerances. The values of the target function f in these tests
were chosen from a random uniform distribution between [−1, 1]. For both node
families, the results show that the number of iterations is small and stays relatively
constant as N increases. Additionally, there are only minor increases in the number of
iterations as the tolerances are made stricter. The results for the Hammersley family
show that the number iterations are slightly higher than the icosahedral family, but
they are still small. This is encouraging considering that the mesh ratios (displayed in
the third column) are considerably larger for these nodes and that we used the same
formula as the icosahedral family for determining nodes in each local Lagrange basis.

For the final numerical experiment, we use the preconditioner to interpolate a field
taken from a numerical simulation on the icosahedral node sets to a regular latitude-
longitude grid. As mentioned above, this is often necessary for purposes of comparing
solutions from different computational models, plotting solutions, or coupling different
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Table 7.1

Number of GMRES iterations required for computing an approximate solution to (7.3) using the
quasi-uniform icosahadedral and the low discrepancy Hammersley families of nodes on the sphere.
Here N is the cardinality of the node set, n = 7�(log10 N)2� corresponds to the number of nodes used
to construct the local basis, and tol refers to the tolerance on the relative residual in the GMRES
method. The mesh ratio ρX is also displayed for each node set for comparison purposes but is not
needed in the computations. The right-hand side was set to random values uniformly distributed
between [−1, 1], and the initial guess for GMRES was set equal to the function values.

Number of GMRES iterations
tol = 10−6 tol = 10−8 tol = 10−10 tol = 10−12

N n ρX Icosahedral nodes
2562 84 1.650 7 8 9 10
10242 119 1.679 5 7 8 9
23042 140 1.688 6 7 8 9
40962 154 1.693 5 7 7 8
92162 175 1.688 6 8 9 10
163842 196 1.701 5 7 7 8

N n ρX Hammersley nodes
4000 91 24.56 8 10 11 12
8000 112 34.74 8 9 11 12
16000 126 49.13 7 9 10 11
32000 147 69.48 7 8 10 11
64000 168 98.26 7 9 10 12

Fig. 7.1. Interpolated relative vorticity from a numerical simulation of the shallow water wave
equations on the N = 163842 icosahedral node sets. The original values for the relative vorticity
come from [9] and have been interpolated to a regular 300 × 600 latitude-longitude based grid using
the restricted kernel spline k2(x, α) = (1 − x · α) log(1 − x · α). The interpolation coefficients were
computed using GMRES on the preconditioned system (7.3).

models together. The data we use comes from [9] and represents the relative vorticity
of a fluid described by the shallow water wave equations on the surface of a rotating
sphere. The initial conditions for the model lead to the development of a highly
nonlinear wave with rapid energy transfer from large to small scales, resulting in
complex vortical dynamics. The numerical solution was computed on the N = 163842
node set and we interpolated it to a regular 300× 600 latitude-longitude based grid.
Figure 7.1 displays the resulting interpolated relative vorticity from the simulation
at time t = 6 days. The figure clearly shows that the complex flow structure has
been maintained after the interpolation. As in the numerical examples above, the
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approximate solution to (7.3) with this data was obtained in seven iterations of the
GMRES method using a tolerance of 10−8.
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