35 research outputs found

    Magnetic record associated with tree ring density: Possible climate proxy

    Get PDF
    A magnetic signature of tree rings was tested as a potential paleo-climatic indicator. We examined wood from sequoia tree, located in Mountain Home State Forest, California, whose tree ring record spans over the period 600 – 1700 A.D. We measured low and high-field magnetic susceptibility, the natural remanent magnetization (NRM), saturation isothermal remanent magnetization (SIRM), and stability against thermal and alternating field (AF) demagnetization. Magnetic investigation of the 200 mm long sequoia material suggests that magnetic efficiency of natural remanence may be a sensitive paleoclimate indicator because it is substantially higher (in average >1%) during the Medieval Warm Epoch (700–1300 A.D.) than during the Little Ice Age (1300–1850 A.D.) where it is <1%. Diamagnetic behavior has been noted to be prevalent in regions with higher tree ring density. The mineralogical nature of the remanence carrier was not directly detected but maghemite is suggested due to low coercivity and absence of Verwey transition. Tree ring density, along with the wood's magnetic remanence efficiency, records the Little Ice Age (LIA) well documented in Europe. Such a record suggests that the European LIA was a global phenomenon. Magnetic analysis of the thermal stability reveals the blocking temperatures near 200 degree C. This phenomenon suggests that the remanent component in this tree may be thermal in origin and was controlled by local thermal condition

    Shorter Telomeres May Mark Early Risk of Dementia: Preliminary Analysis of 62 Participants from the Nurses' Health Study

    Get PDF
    Background: Dementia takes decades to develop, and effective prevention will likely require early intervention. Thus, it is critical to identify biomarkers of preclinical disease, allowing targeting of high-risk subjects for preventive efforts. Since telomeres shorten with age and oxidative stress both of which are important contributors to the onset of dementia, telomere length might be a valuable biomarker. Methodology/Principal Findings: Among 62 participants of the Nurses' Health Study,we conducted neurologic evaluations, including patient and caregiver interviews physical exam, neurologic exam and neuropsychologic testing. We also conducted magnetic resonance imaging (MRI) in a sample of 29 of these women. In these preliminary data, after adjustment for numerous health and lifestyle factors, we found that truncated telomeres in peripheral blood leukocytes segregate with preclinical dementia states, including mild cognitive impairment (MRI); the odds of MCI were 12 fold higher (odds ratio = 12.00, 95% confidence interval 1.24-116.5) for those with shorter telomere length compared to longer telomere length. In addition, decreasing telomere length was strongly related to decreasing hippocampal volume (p=0.038). Conclusions: These preliminary data suggest that telomere length may be a possible early marker of dementia risk, and merits further study in large, prospective investigations

    Differentiation of mouse bone marrow derived stem cells toward microglia-like cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microglia, the macrophages of the brain, have been implicated in the causes of neurodegenerative diseases and display a loss of function during aging. Throughout life, microglia are replenished by limited proliferation of resident microglial cells. Replenishment by bone marrow-derived progenitor cells is still under debate. In this context, we investigated the differentiation of mouse microglia from bone marrow (BM) stem cells. Furthermore, we looked at the effects of FMS-like tyrosine kinase 3 ligand (Flt3L), astrocyte-conditioned medium (ACM) and GM-CSF on the differentiation to microglia-like cells.</p> <p>Methods</p> <p>We assessed <it>in vitro-</it>derived microglia differentiation by marker expression (CD11b/CD45, F4/80), but also for the first time for functional performance (phagocytosis, oxidative burst) and <it>in situ </it>migration into living brain tissue. Integration, survival and migration were assessed in organotypic brain slices.</p> <p>Results</p> <p>The cells differentiated from mouse BM show function, markers and morphology of primary microglia and migrate into living brain tissue. Flt3L displays a negative effect on differentiation while GM-CSF enhances differentiation.</p> <p>Conclusion</p> <p>We conclude that <it>in vitro-</it>derived microglia are the phenotypic and functional equivalents to primary microglia and could be used in cell therapy.</p

    Long telomeres are associated with clonality in wild populations of the fissiparous starfish Coscinasterias tenuispina

    Get PDF
    7 páginas, 4 figuras, 3 tablasTelomeres usually shorten during an organism’s lifespan and have thus been used as an aging and health marker. When telomeres become sufficiently short, senescence is induced. The most common method of restoring telomere length is via telomerase reverse transcriptase activity, highly expressed during embryogenesis. However, although asexual reproduction from adult tissues has an important role in the life cycles of certain species, its effect on the aging and fitness of wild populations, as well as its implications for the long-term survival of populations with limited genetic variation, is largely unknown. Here we compare relative telomere length of 58 individuals from four populations of the asexually reproducing starfish Coscinasterias tenuispina. Additionally, 12 individuals were used to compare telomere lengths in regenerating and non-regenerating arms, in two different tissues (tube feet and pyloric cecum). The level of clonality was assessed by genotyping the populations based on 12 specific microsatellite loci and relative telomere length was measured via quantitative PCR. The results revealed significantly longer telomeres in Mediterranean populations than Atlantic ones as demonstrated by the Kruskal–Wallis test (K=24.17, significant value: P-valueo0.001), with the former also characterized by higher levels of clonality derived from asexual reproduction. Telomeres were furthermore significantly longer in regenerating arms than in non-regenerating arms within individuals (pyloric cecum tissue: Mann–Whitney test, V=299, P-valueo10− 6; and tube feet tissue Student's t= 2.28, P-value =0.029). Our study suggests that one of the mechanisms responsible for the long-term somatic maintenance and persistence of clonal populations is telomere elongation.This research was financially supported by a PhD fellowship FPI-MICINN (BES-2011-044154) (ACG), the European ASSEMBLY project (227799), the Swedish Royal Academy of Sciences (ACG) and the Spanish Government project CTM2010-22218-C02. The research was also supported by a ‘Juan de la Cierva’ contract from the Spanish Government (RPP) and by the Adlerbertska Research Foundation (HNS).Peer reviewe

    Leukocyte Telomere Length in Major Depression: Correlations with Chronicity, Inflammation and Oxidative Stress - Preliminary Findings

    Get PDF
    Depression is associated with an unusually high rate of aging-related illnesses and early mortality. One aspect of “accelerated aging” in depression may be shortened leukocyte telomeres. When telomeres critically shorten, as often occurs with repeated mitoses or in response to oxidation and inflammation, cells may die. Indeed, leukocyte telomere shortening predicts early mortality and medical illnesses in non-depressed populations. We sought to determine if leukocyte telomeres are shortened in Major Depressive Disorder (MDD), whether this is a function of lifetime depression exposure and whether this is related to putative mediators, oxidation and inflammation.Leukocyte telomere length was compared between 18 unmedicated MDD subjects and 17 controls and was correlated with lifetime depression chronicity and peripheral markers of oxidation (F2-isoprostane/Vitamin C ratio) and inflammation (IL-6). Analyses were controlled for age and sex.The depressed group, as a whole, did not differ from the controls in telomere length. However, telomere length was significantly inversely correlated with lifetime depression exposure, even after controlling for age (p<0.05). Average telomere length in the depressed subjects who were above the median of lifetime depression exposure (≥9.2 years' cumulative duration) was 281 base pairs shorter than that in controls (p<0.05), corresponding to approximately seven years of “accelerated cell aging.” Telomere length was inversely correlated with oxidative stress in the depressed subjects (p<0.01) and in the controls (p<0.05) and with inflammation in the depressed subjects (p<0.05).These preliminary data indicate that accelerated aging at the level of leukocyte telomeres is proportional to lifetime exposure to MDD. This might be related to cumulative exposure to oxidative stress and inflammation in MDD. This suggest that telomere shortening does not antedate depression and is not an intrinsic feature. Rather, telomere shortening may progress in proportion to lifetime depression exposure

    The role of microglia in human disease: therapeutic tool or target?

    Get PDF

    Microglia in the Aging Retina

    No full text
    In the healthy retina, microglial cells represent a self-renewing population of innate immune cells, which constantly survey their microenvironment. Equipped with receptors, a microglial cell detects subtle cellular damage and rapidly responds with activation, migration, and increased phagocytic activity. While the involvement of microglial cells has been well characterized in monogenic retinal disorders, it is still unclear how they contribute to the onset of retinal aging disorders including age-related macular degeneration (AMD). There is evidence, that microglial activation is not solely a secondary manifestation of retinal tissue damage in age-related disorders. Thus, work in the aging rodent and human retina suggests that long-lived and genetically predisposed microglia transform into a dystrophic state, with loss of neuroprotective functions. In this concept, malfunction of aging microglia can trigger a chronic low-grade inflammatory environment that favors the onset and progression of retinal degeneration
    corecore