21 research outputs found

    The relationship between the error catastrophe, survival of the flattest, and natural selection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The quasispecies model is a general model of evolution that is generally applicable to replication up to high mutation rates. It predicts that at a sufficiently high mutation rate, quasispecies with higher mutational robustness can displace quasispecies with higher replicative capacity, a phenomenon called "survival of the flattest". In some fitness landscapes it also predicts the existence of a maximum mutation rate, called the error threshold, beyond which the quasispecies enters into error catastrophe, losing its genetic information. The aim of this paper is to study the relationship between survival of the flattest and the transition to error catastrophe, as well as the connection between these concepts and natural selection.</p> <p>Results</p> <p>By means of a very simplified model, we show that the transition to an error catastrophe corresponds to a value of zero for the selective coefficient of the mutant phenotype with respect to the master phenotype, indicating that transition to the error catastrophe is in this case similar to the selection of a more robust species. This correspondence has been confirmed by considering a single-peak landscape in which sequences are grouped with respect to their Hamming distant from the master sequence. When the robustness of a classe is changed by modification of its quality factor, the distribution of the population changes in accordance with the new value of the robustness, although an error catastrophe can be detected at the same values as in the general case. When two quasispecies of different robustness competes with one another, the entry of one of them into error catastrophe causes displacement of the other, because of the greater robustness of the former. Previous works are explicitly reinterpreted in the light of the results obtained in this paper.</p> <p>Conclusions</p> <p>The main conclusion of this paper is that the entry into error catastrophe is a specific case of survival of the flattest acting on phenotypes that differ in the trade-off between replicative ability and mutational robustness. In fact, entry into error catastrophe occurs when the mutant phenotype acquires a selective advantage over the master phenotype. As both entry into error catastrophe and survival of the flattest are caused by natural selection when mutation rate is increased, we propose differentiating between them by the level of selection at which natural selection acts. So we propose to consider the transition to error catastrophe as a phenomenon of intra-quasispecies selection, and survival of the flattest as a phenomenon of inter-quasispecies selection.</p

    Ancient DNA analysis suggests negligible impact of the Wari Empire expansion in Peru's Central Coast during the Middle Horizon

    Get PDF
    The analysis of ancient human DNA from South America allows the exploration of pre-Columbian population history through time and to directly test hypotheses about cultural and demographic evolution. The Middle Horizon (650-1100 AD) represents a major transitional period in the Central Andes, which is associated with the development and expansion of ancient Andean empires such as Wari and Tiwanaku. These empires facilitated a series of interregional interactions and socio-political changes, which likely played an important role in shaping the region's demographic and cultural profiles. We analyzed individuals from three successive pre-Columbian cultures present at the Huaca Pucllana archaeological site in Lima, Peru: Lima (Early Intermediate Period, 500-700 AD), Wari (Middle Horizon, 800-1000 AD) and Ychsma (Late Intermediate Period, 1000-1450 AD). We sequenced 34 complete mitochondrial genomes to investigate the potential genetic impact of the Wari Empire in the Central Coast of Peru. The results indicate that genetic diversity shifted only slightly through time, ruling out a complete population discontinuity or replacement driven by the Wari imperialist hegemony, at least in the region around present-day Lima. However, we caution that the very subtle genetic contribution of Wari imperialism at the particular Huaca Pucllana archaeological site might not be representative for the entire Wari territory in the Peruvian Central Coast.Guido Valverde, María Inés Barreto Romero, Isabel Flores Espinoza, Alan Cooper, Lars Fehren-Schmitz, Bastien Llamas, Wolfgang Haa

    Natural Selection Affects Multiple Aspects of Genetic Variation at Putatively Neutral Sites across the Human Genome

    Get PDF
    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these correlations can be explained solely by negative selection against deleterious mutations or whether positive selection acting on favorable alleles is also required. Here we attempt to address these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations. However, models with strong positive selection on nonsynonymous mutations and little negative selection predict a stronger negative correlation between neutral diversity and nonsynonymous divergence than observed in the actual data, supporting the importance of negative, rather than positive, selection throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has affected multiple aspects of linked neutral variation throughout the human genome and that positive selection is not required to explain these observations

    The effects of purifying selection on patterns of genetic differentiation between Drosophila melanogaster populations.

    Get PDF
    Using the data provided by the Drosophila Population Genomics Project, we investigate factors that affect the genetic differentiation between Rwandan and French populations of D. melanogaster. By examining within-population polymorphisms, we show that sites in long introns (especially those >2000 bp) have significantly lower π (nucleotide diversity) and more low-frequency variants (as measured by Tajima's D, minor allele frequencies, and prevalence of variants that are private to one of the two populations) than short introns, suggesting a positive relationship between intron length and selective constraint. A similar analysis of protein-coding polymorphisms shows that 0-fold (degenerate) sites in more conserved genes are under stronger purifying selection than those in less conserved genes. There is limited evidence that selection on codon bias has an effect on differentiation (as measured by FST) at 4-fold (degenerate) sites, and 4-fold sites and sites in 8-30 bp of short introns ⩽65 bp have comparable FST values. Consistent with the expected effect of purifying selection, sites in long introns and 0-fold sites in conserved genes are less differentiated than those in short introns and less conserved genes, respectively. Genes in non-crossover regions (for example, the fourth chromosome) have very high FST values at both 0-fold and 4-fold degenerate sites, which is probably because of the large reduction in within-population diversity caused by tight linkage between many selected sites. Our analyses also reveal subtle statistical properties of FST, which arise when information from multiple single nucleotide polymorphisms is combined and can lead to the masking of important signals of selection

    Maturation of pig oocytes in vitro in a medium with pyruvate

    No full text
    The aim of in vitro maturation oocyte systems is to produce oocytes of comparable quality to those derived in vivo. The present study was designed to examine the surface morphological changes of the cumulus-oocyte complex (COC) and nuclear maturation in a culture system containing pyruvate. Ovaries were obtained from a slaughterhouseand transported to the laboratory within 2 h at 35-39ºC,and rinsed three times in 0.9% NaCl. The COCs were harvested from the ovaries and in vitro maturation was evaluated in San Marcos (SM) medium, a chemically defined culture system containing 22.3 mM sodium pyruvate. Oocytes were cultured in SM, SM + porcine follicular fluid (pFF) and in SM + pFF + gonadotropins (eCG and hCG) for 20-22 h and then without hormonal supplements for an additional 20-22 h. After culture, the degree of cumulus expansion and frequency of nuclear maturation were determined. Oocytes matured in SM (40.9%) and SM + pFF (42.9%) showed moderate cumulus expansion, whereas oocytes matured in SM + pFF + gonadotropins (54.6%) showed high cumulus expansion. The maturation rate of cultured oocytes, measured in function of the presence of the polar corpuscle, did not differ significantly between SM (40.9 ± 3.6%) and SM + pFF (42.9 ± 3.7%). These results indicate that pig oocytes can be successfully matured in a chemically definedmedium and suggest a possible bifunctional role of pyruvate as an energy substrate and as an antioxidant protecting oocytes against the stress of the in vitro environment

    Incongruence between test statistics and <it>P </it>values in medical papers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Given an observed test statistic and its degrees of freedom, one may compute the observed <it>P </it>value with most statistical packages. It is unknown to what extent test statistics and <it>P </it>values are congruent in published medical papers.</p> <p>Methods</p> <p>We checked the congruence of statistical results reported in all the papers of volumes 409–412 of <it>Nature </it>(2001) and a random sample of 63 results from volumes 322–323 of <it>BMJ </it>(2001). We also tested whether the frequencies of the last digit of a sample of 610 test statistics deviated from a uniform distribution (i.e., equally probable digits).</p> <p>Results</p> <p>11.6% (21 of 181) and 11.1% (7 of 63) of the statistical results published in <it>Nature </it>and <it>BMJ </it>respectively during 2001 were incongruent, probably mostly due to rounding, transcription, or type-setting errors. At least one such error appeared in 38% and 25% of the papers of <it>Nature </it>and <it>BMJ</it>, respectively. In 12% of the cases, the significance level might change one or more orders of magnitude. The frequencies of the last digit of statistics deviated from the uniform distribution and suggested digit preference in rounding and reporting.</p> <p>Conclusions</p> <p>This incongruence of test statistics and <it>P </it>values is another example that statistical practice is generally poor, even in the most renowned scientific journals, and that quality of papers should be more controlled and valued.</p

    A Case for the Ancient Origin of Coronaviruses

    No full text
    Coronaviruses are found in a diverse array of bat and bird species, which are believed to act as natural hosts. Molecular clock dating analyses of coronaviruses suggest that the most recent common ancestor of these viruses existed around 10,000 years ago. This relatively young age is in sharp contrast to the ancient evolutionary history of their putative natural hosts, which began diversifying tens of millions of years ago. Here, we attempted to resolve this discrepancy by applying more realistic evolutionary models that have previously revealed the ancient evolutionary history of other RNA viruses. By explicitly modeling variation in the strength of natural selection over time and thereby improving the modeling of substitution saturation, we found that the time to the most recent ancestor common for all coronaviruses is likely far greater (millions of years) than the previously inferred range

    Comprehensive variation discovery in single human genomes

    Get PDF
    Complete knowledge of the genetic variation in individual human genomes is a crucial foundation for understanding the etiology of disease. Genetic variation is typically characterized by sequencing individual genomes and comparing reads to a reference. Existing methods do an excellent job of detecting variants in approximately 90% of the human genome, however calling variants in the remaining 10% of the genome (largely low-complexity sequence and segmental duplications) is challenging. To improve variant calling, we developed a new algorithm, DISCOVAR, and examined its performance on improved, low-cost sequence data. Using a newly created reference set of variants from finished sequence of 103 randomly chosen Fosmids, we find that some standard variant call sets miss up to 25% of variants. We show that the combination of new methods and improved data increases sensitivity several-fold, with the greatest impact in challenging regions of the human genome
    corecore