12,177 research outputs found

    The effect of interaction between Lipoprotein Lipase and ApoVLDL-II genes on fat and serum biochemical levels

    Get PDF
    Body weight, abdominal fat weight and serum biochemical levels were determined from lean and fat chicken breeds at 12 weeks of age. Single nucleotide polymorphism (SNP) in apoVLDL-II and lipoprotein lipase genes was screened by PCR-SSCP and detected by direct sequencing. Lipoprotein lipase gene frequency was found to be significantly different (P < 0.01) in lean chicken whereas it was non-significantly different in fat chicken. SNP in apoVLDL-II and lipoprotein lipase genes significantly (P< 0.05) affected body weight and fat weight. Similarly their interaction significantly (P < 0.05) affected body weight and fat weight. However, no significant difference was observed in the percentage of abdominal fat. SNP in apoVLDL-II and lipoprotein lipase genes significantly (P < 0.05) affected total cholesterol and high density lipoprotein. More likely, the interaction of apoVLDL-II and lipoprotein lipase significantly affect total cholesterol, triglyceride, high density lipoprotein, very low density lipoprotein and low density lipoprotein

    Oscillatory behavior of two nonlinear microbial models of soil carbon decomposition

    Get PDF
    A number of nonlinear models have recently been proposed for simulating soil carbon decomposition. Their predictions of soil carbon responses to fresh litter input and warming differ significantly from conventional linear models. Using both stability analysis and numerical simulations, we showed that two of those nonlinear models (a two-pool model and a three-pool model) exhibit damped oscillatory responses to small perturbations. Stability analysis showed the frequency of oscillation is proportional to √(ε⁻¹-1) Ks/Vs in the two-pool model, and to √(ε⁻¹-1) Kl/Vl in the three-pool model, where ε is microbial growth efficiency, Ks and Kl are the half saturation constants of soil and litter carbon, respectively, and /Vs and /Vl are the maximal rates of carbon decomposition per unit of microbial biomass for soil and litter carbon, respectively. For both models, the oscillation has a period of between 5 and 15 years depending on other parameter values, and has smaller amplitude at soil temperatures between 0 and 15°C. In addition, the equilibrium pool sizes of litter or soil carbon are insensitive to carbon inputs in the nonlinear model, but are proportional to carbon input in the conventional linear model. Under warming, the microbial biomass and litter carbon pools simulated by the nonlinear models can increase or decrease, depending whether ε varies with temperature. In contrast, the conventional linear models always simulate a decrease in both microbial and litter carbon pools with warming. Based on the evidence available, we concluded that the oscillatory behavior and insensitivity of soil carbon to carbon input are notable features in these nonlinear models that are somewhat unrealistic. We recommend that a better model for capturing the soil carbon dynamics over decadal to centennial timescales would combine the sensitivity of the conventional models to carbon influx with the flexible response to warming of the nonlinear model.15 page(s

    Chicken CRTAM Binds Nectin-Like 2 Ligand and Is Upregulated on CD8⁺ αβ and γδ T Lymphocytes with Different Kinetics

    Get PDF
    During a search for immunomodulatory receptors in the chicken genome, we identified a previously cloned chicken sequence as CRTAM homologue by its overall identity and several conserved sequence features. For further characterization, we generated a CRTAM specific mab. No staining was detectable in freshly isolated cell preparations from thymus, bursa, caecal tonsils, spleen, blood and intestine. Activation of splenocytes with recombinant IL-2 increased rapid CRTAM expression within a 2 h period on about 30% of the cells. These CRTAM+ cells were identified as CD8+ γδ T lymphocytes. In contrast, CRTAM expression could not be stimulated on PBL with IL-2, even within a 48 h stimulation period. As a second means of activation, T cell receptor (TCR) crosslinking using an anti-αβ-TCR induced CRTAM on both PBL and splenocytes. While CRTAM expression was again rapidly upregulated on splenocytes within 2 h, it took 48 h to reach maximum levels of CRTAM expression in PBL. Strikingly, albeit the stimulation of splenocytes was performed with anti-αβ-TCR, CRTAM expression after 2 h was mainly restricted to CD8+ γδ T lymphocytes, however, the longer anti-TCR stimulation of peripheral blood lymphocytes (PBL) resulted in CRTAM expression on αβ T lymphocytes. In order to characterize the potential ligand we cloned and expressed chicken Necl-2, a member of the nectin and nectin-like family which is highly homologous to its mammalian counterpart. Three independent assays including a reporter assay, staining with a CRTAM-Ig fusion protein and a cell conjugate assay confirmed the interaction of CRTAM with Necl-2 which could also be blocked by a soluble CRTAM-Ig fusion protein or a CRTAM specific mab. These results suggest that chicken CRTAM represents an early activation antigen on CD8+ T cells which binds to Necl-2 and is upregulated with distinct kinetics on αβ versus γδ T lymphocytes

    Hidden Conformal Symmetry of Extremal Kerr-Bolt Spacetimes

    Full text link
    We show that extremal Kerr-Bolt spacetimes have a hidden conformal symmetry. In this regard, we consider the wave equation of a massless scalar field propagating in extremal Kerr-Bolt spacetimes and find in the "near region", the wave equation in extremal limit can be written in terms of the SL(2,R)SL(2,R) quadratic Casimir. Moreover, we obtain the microscopic entropy of the extremal Kerr-Bolt spacetimes also we calculate the correlation function of a near-region scalar field and find perfect agreement with the dual 2D CFT.Comment: 13 page

    Highly stretchable and sensitive self-powered sensors based on the N-Type thermoelectric effect of polyurethane/Na_{x}(Ni-ett)_{n}/graphene oxide composites

    Get PDF
    The development of stretchable organic thermoelectric materials is prompted by fast evolving application fields like flexible electronic devices, soft robotics, health monitoring and internet-of-things. Stretchability in thermoelectric materials is usually obtained by using an insulating elastomer, either as a substrate or as a matrix in a blend or composite, which, unfortunately, leads to a compromise in thermoelectric performance. Herein, a potential solution is reported exploiting the addition of graphene oxide as a secondary (nano)filler in a polyurethane/poly nickel-ethenetetrathiolates film. Compared with traditional binary blends, our ternary composite shows an increased electrical conductivity (4 times), air-stability (∼20 times after 3 months), and stretchability (38% increase in strain at break). With a gauge factor (GF) of ∼58, this new composite film shows high sensitivity to tensile strain. Thanks to its Seebeck coefficient of ∼ −40 μV K^{−1}, the composite film can generate a thermopower of ∼0.25 pW when subjected to a small temperature difference (30 °C), which could be exploited by self-powered strain sensors. Therefore, the ternary polyurethane/poly nickel-ethenetetrathiolates/graphene oxide composite film can work as a stretchable strain sensor, providing a strategy to reconcile the compromise between thermoelectric performance and stretchability

    Evidence for Anthropogenic Surface Loading as Trigger Mechanism of the 2008 Wenchuan Earthquake

    Full text link
    Two and a half years prior to China's M7.9 Wenchuan earthquake of May 2008, at least 300 million metric tons of water accumulated with additional seasonal water level changes in the Minjiang River Valley at the eastern margin of the Longmen Shan. This article shows that static surface loading in the Zipingpu water reservoir induced Coulomb failure stresses on the nearby Beichuan thrust fault system at <17km depth. Triggering stresses exceeded levels of daily lunar and solar tides and perturbed a fault area measuring 416+/-96km^2. These stress perturbations, in turn, likely advanced the clock of the mainshock and directed the initial rupture propagation upward towards the reservoir on the "Coulomb-like" Beichuan fault with rate-and-state dependent frictional behavior. Static triggering perturbations produced up to 60 years (0.6%) of equivalent tectonic loading, and show strong correlations to the coseismic slip. Moreover, correlations between clock advancement and coseismic slip, observed during the mainshock beneath the reservoir, are strongest for a longer seismic cycle (10kyr) of M>7 earthquakes. Finally, the daily event rate of the micro-seismicity (M>0.5) correlates well with the static stress perturbations, indicating destabilization.Comment: 22 pages, 4 figures, 3 table

    Chicken TREM-B1, an Inhibitory Ig-Like Receptor Expressed on Chicken Thrombocytes

    Get PDF
    Triggering receptors expressed on myeloid cells (TREM) form a multigene family of immunoregulatory Ig-like receptors and play important roles in the regulation of innate and adaptive immunity. In chickens, three members of the TREM family have been identified on chromosome 26. One of them is TREM-B1 which possesses two V-set Ig-domains, an uncharged transmembrane region and a long cytoplasmic tail with one ITSM and two ITIMs indicating an inhibitory function. We generated specific monoclonal antibodies by immunizing a Balb/c mouse with a TREM-B1-FLAG transfected BWZ.36 cell line and tested the hybridoma supernatants on TREM-B1-FLAG transfected 2D8 cells. We obtained two different antibodies specific for TREM-B1, mab 7E8 (mouse IgG1) and mab 1E9 (mouse IgG2a) which were used for cell surface staining. Single and double staining of different tissues, including whole blood preparations, revealed expression on thrombocytes. Next we investigated the biochemical properties of TREM-B1 by using the specific mab 1E9 for immunoprecipitation of either lysates of surface biotinylated peripheral blood cells or stably transfected 2D8 cells. Staining with streptavidin coupled horse radish peroxidase revealed a glycosylated monomeric protein of about 50 kDa. Furthermore we used the stably transfected 2D8 cell line for analyzing the cytoplasmic tyrosine based signaling motifs. After pervanadate treatment, we detected phosphorylation of the tyrosine residues and subsequent recruitment of the tyrosine specific protein phosphatase SHP-2, indicating an inhibitory potential for TREM-B1. We also showed the inhibitory effect of TREM-B1 in chicken thrombocytes using a CD107 degranulation assay. Crosslinking of TREM-B1 on activated primary thrombocytes resulted in decreased CD107 surface expression of about 50-70%
    corecore