13,784 research outputs found

    Monoaromatic compounds in ambient air of various cities: A focus on correlations between the xylenes and ethylbenzene

    Get PDF
    Speciation of o-xylene, m-xylene, p-xylene and ethylbenzene was performed by gas chromatography from ambient air and liquid fuel samples collected at various locations in 19 cities in Europe, Asia and South America. The xylene's mixing ratios were compared to each other from the various locations, which included urban air, traffic air and liquid fuel. For all samples, the xylenes exhibited robust correlations, and the slopes remained constant. The m-xylene/p-xylene ratio was found to be 2.33±0.30, and the m-xylene/o-xylene ratio was found to be 1.84±0.25. These ratios remain persistent even in biomass combustion experiments (in South America and South Africa). Comparing the xylenes to toluene and benzene indicate that combustion, but not fuel evaporation, is the major common source of the xylenes in areas dominated by automotive emissions. Although a wide range of combustion types and combustion efficiencies were encountered throughout all the locations investigated, xylenes and ethylbenzene ratios remained persistent. We discuss the implications of the constancies in the xylenes and ethylbenzene ratios on atmospheric chemistry

    Nonmethane hydrocarbon measurements in the North Atlantic Flight Corridor during the Subsonic Assessment Ozone and Nitrogen Oxide Experiment

    Get PDF
    Mixing ratios of nonmethane hydrocarbons (NMHCs) were not enhanced in whole air samples collected within the North Atlantic Flight Corridor (NAFC) during the fall of 1997. The investigation was conducted aboard NASA's DC-8 research aircraft, as part of the Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX). NMHC enhancements were not detected within the general organized tracking system of the NAFC, nor during two tail chases of the DC-8's own exhaust. Because positive evidence of aircraft emissions was demonstrated by enhancements in both nitrogen oxides and condensation nuclei during SONEX, the NMHC results suggest that the commercial air traffic fleet operating in the North Atlantic region does not contribute at all or contributes negligibly to NMHCs in the NAFC. Copyright 2000 by the American Geophysical Union

    Oscillatory behavior of two nonlinear microbial models of soil carbon decomposition

    Get PDF
    A number of nonlinear models have recently been proposed for simulating soil carbon decomposition. Their predictions of soil carbon responses to fresh litter input and warming differ significantly from conventional linear models. Using both stability analysis and numerical simulations, we showed that two of those nonlinear models (a two-pool model and a three-pool model) exhibit damped oscillatory responses to small perturbations. Stability analysis showed the frequency of oscillation is proportional to √(ε⁻¹-1) Ks/Vs in the two-pool model, and to √(ε⁻¹-1) Kl/Vl in the three-pool model, where ε is microbial growth efficiency, Ks and Kl are the half saturation constants of soil and litter carbon, respectively, and /Vs and /Vl are the maximal rates of carbon decomposition per unit of microbial biomass for soil and litter carbon, respectively. For both models, the oscillation has a period of between 5 and 15 years depending on other parameter values, and has smaller amplitude at soil temperatures between 0 and 15°C. In addition, the equilibrium pool sizes of litter or soil carbon are insensitive to carbon inputs in the nonlinear model, but are proportional to carbon input in the conventional linear model. Under warming, the microbial biomass and litter carbon pools simulated by the nonlinear models can increase or decrease, depending whether ε varies with temperature. In contrast, the conventional linear models always simulate a decrease in both microbial and litter carbon pools with warming. Based on the evidence available, we concluded that the oscillatory behavior and insensitivity of soil carbon to carbon input are notable features in these nonlinear models that are somewhat unrealistic. We recommend that a better model for capturing the soil carbon dynamics over decadal to centennial timescales would combine the sensitivity of the conventional models to carbon influx with the flexible response to warming of the nonlinear model.15 page(s

    Hidden Conformal Symmetry of Extremal Kerr-Bolt Spacetimes

    Full text link
    We show that extremal Kerr-Bolt spacetimes have a hidden conformal symmetry. In this regard, we consider the wave equation of a massless scalar field propagating in extremal Kerr-Bolt spacetimes and find in the "near region", the wave equation in extremal limit can be written in terms of the SL(2,R)SL(2,R) quadratic Casimir. Moreover, we obtain the microscopic entropy of the extremal Kerr-Bolt spacetimes also we calculate the correlation function of a near-region scalar field and find perfect agreement with the dual 2D CFT.Comment: 13 page

    Evidence for Anthropogenic Surface Loading as Trigger Mechanism of the 2008 Wenchuan Earthquake

    Full text link
    Two and a half years prior to China's M7.9 Wenchuan earthquake of May 2008, at least 300 million metric tons of water accumulated with additional seasonal water level changes in the Minjiang River Valley at the eastern margin of the Longmen Shan. This article shows that static surface loading in the Zipingpu water reservoir induced Coulomb failure stresses on the nearby Beichuan thrust fault system at <17km depth. Triggering stresses exceeded levels of daily lunar and solar tides and perturbed a fault area measuring 416+/-96km^2. These stress perturbations, in turn, likely advanced the clock of the mainshock and directed the initial rupture propagation upward towards the reservoir on the "Coulomb-like" Beichuan fault with rate-and-state dependent frictional behavior. Static triggering perturbations produced up to 60 years (0.6%) of equivalent tectonic loading, and show strong correlations to the coseismic slip. Moreover, correlations between clock advancement and coseismic slip, observed during the mainshock beneath the reservoir, are strongest for a longer seismic cycle (10kyr) of M>7 earthquakes. Finally, the daily event rate of the micro-seismicity (M>0.5) correlates well with the static stress perturbations, indicating destabilization.Comment: 22 pages, 4 figures, 3 table

    Identification of Colletotrichum species associated with anthracnose disease of coffee in Vietnam

    Get PDF
    Colletotrichum gloeosporioides, C. acutatum, C. capsici and C. boninense associated with anthracnose disease on coffee (Coffea spp.) in Vietnam were identified based on morphology and DNA analysis. Phylogenetic analysis of DNA sequences from the internal transcribed spacer region of nuclear rDNA and a portion of mitochondrial small subunit rRNA were concordant and allowed good separation of the taxa. We found several Colletotrichum isolates of unknown species and their taxonomic position remains unresolved. The majority of Vietnamese isolates belonged to C. gloeosporioides and they grouped together with the coffee berry disease (CBD) fungus, C. kahawae. However, C. kahawae could be distinguished from the Vietnamese C. gloeosporioides isolates based on ammonium tartrate utilization, growth rate and pathogenictity. C. gloeosporioides isolates were more pathogenic on detached green berries than isolates of the other species, i.e. C. acutatum, C capsici and C. boninense. Some of the C. gloeosporioides isolates produced slightly sunken lesion on green berries resembling CBD symptoms but it did not destroy the bean. We did not find any evidence of the presence of C. kahawae in Vietnam

    New and simple algorithms for stable flow problems

    Get PDF
    Stable flows generalize the well-known concept of stable matchings to markets in which transactions may involve several agents, forwarding flow from one to another. An instance of the problem consists of a capacitated directed network, in which vertices express their preferences over their incident edges. A network flow is stable if there is no group of vertices that all could benefit from rerouting the flow along a walk. Fleiner established that a stable flow always exists by reducing it to the stable allocation problem. We present an augmenting-path algorithm for computing a stable flow, the first algorithm that achieves polynomial running time for this problem without using stable allocation as a black-box subroutine. We further consider the problem of finding a stable flow such that the flow value on every edge is within a given interval. For this problem, we present an elegant graph transformation and based on this, we devise a simple and fast algorithm, which also can be used to find a solution to the stable marriage problem with forced and forbidden edges. Finally, we study the stable multicommodity flow model introduced by Kir\'{a}ly and Pap. The original model is highly involved and allows for commodity-dependent preference lists at the vertices and commodity-specific edge capacities. We present several graph-based reductions that show equivalence to a significantly simpler model. We further show that it is NP-complete to decide whether an integral solution exists

    Hybridization between wild and cultivated potato species in the Peruvian Andes and biosafety implications for deployment of GM potatoes

    Get PDF
    The nature and extent of past and current hybridization between cultivated potato and wild relatives in nature is of interest to crop evolutionists, taxonomists, breeders and recently to molecular biologists because of the possibilities of inverse gene flow in the deployment of genetically-modified (GM) crops. This research proves that natural hybridization occurs in areas of potato diversity in the Andes, the possibilities for survival of these new hybrids, and shows a possible way forward in case of GM potatoes should prove advantageous in such areas

    Sequential therapy of anti-Nogo-A antibody treatment and treadmill training leads to cumulative improvements after spinal cord injury in rats

    Get PDF
    Intense training is the most clinically successful treatment modality following incomplete spinal cord injuries (SCIs). With the advent of plasticity enhancing treatments, understanding how treatments might interact when delivered in combination becomes critical. Here, we investigated a rational approach to sequentially combine treadmill locomotor training with antibody mediated suppression of the fiber growth inhibitory protein Nogo-A. Following a large but incomplete thoracic lesion, rats were immediately treated with either anti-Nogo-A or control antibody (2 weeks) and then either left untrained or step-trained starting 3 weeks after injury for 8 weeks. It was found that sequentially combined therapy improved step consistency and reduced toe dragging and climbing errors, as seen with training and anti-Nogo-A individually. Animals with sequential therapy also adopted a more parallel paw position during bipedal walking and showed greater overall quadrupedal locomotor recovery than individual treatments. Histologically, sequential therapy induced the greatest corticospinal tract sprouting caudally into the lumbar region and increased the number of serotonergic synapses onto lumbar motoneurons. Increased primary afferent sprouting and synapse formation onto lumbar motoneurons observed with anti-Nogo-A antibody were reduced by training. Animals with sequential therapy also showed the highest reduction of lumbar interneuronal activity associated with walking (c-fos expression). No treatment effects for thermal nociception, mechanical allodynia, or lesion volume were observed. The results demonstrate that sequential administration of anti-Nogo-A antibody followed in time with intensive locomotor training leads to superior recovery of lost locomotor functions, which is probably mediated by changes in the interaction between descending sprouting and local segmental networks after SCI
    corecore