2,886 research outputs found

    Influence of severe plastic deformation on the precipitation hardening of a FeSiTi steel

    Full text link
    The combined strengthening effects of grain refinement and high precipitated volume fraction (~6at.%) on the mechanical properties of FeSiTi alloy subjected to SPD processing prior to aging treatment were investigated by atom probe tomography and scanning transmission electron microscopy. It was shown that the refinement of the microstructure affects the precipitation kinetics and the spatial distribution of the secondary hardening intermetallic phase, which was observed to nucleate heterogeneously on dislocations and sub-grain boundaries. It was revealed that alloys successively subjected to these two strengthening mechanisms exhibit a lower increase in mechanical strength than a simple estimation based on the summation of the two individual strengthening mechanisms

    Robust isothermal electric switching of interface magnetization: A route to voltage-controlled spintronics

    Full text link
    Roughness-insensitive and electrically controllable magnetization at the (0001) surface of antiferromagnetic chromia is observed using magnetometry and spin-resolved photoemission measurements and explained by the interplay of surface termination and magnetic ordering. Further, this surface in placed in proximity with a ferromagnetic Co/Pd multilayer film. Exchange coupling across the interface between chromia and Co/Pd induces an electrically controllable exchange bias in the Co/Pd film, which enables a reversible isothermal (at room temperature) shift of the global magnetic hysteresis loop of the Co/Pd film along the magnetic field axis between negative and positive values. These results reveal the potential of magnetoelectric chromia for spintronic applications requiring non-volatile electric control of magnetization.Comment: Single PDF file: 27 pages, 6 figures; version of 12/30/09; submitted to Nature Material

    Clinical Implication of Targeting of Cancer Stem Cells

    Get PDF
    The existence of cancer stem cells (CSCs) is receiving increasing interest particularly due to its potential ability to enter clinical routine. Rapid advances in the CSC field have provided evidence for the development of more reliable anticancer therapies in the future. CSCs typically only constitute a small fraction of the total tumor burden; however, they harbor self-renewal capacity and appear to be relatively resistant to conventional therapies. Recent therapeutic approaches aim to eliminate or differentiate CSCs or to disrupt the niches in which they reside. Better understanding of the biological characteristics of CSCs as well as improved preclinical and clinical trials targeting CSCs may revolutionize the treatment of many cancers. Copyright (c) 2012 S. Karger AG, Base

    Hierarchical information clustering by means of topologically embedded graphs

    Get PDF
    We introduce a graph-theoretic approach to extract clusters and hierarchies in complex data-sets in an unsupervised and deterministic manner, without the use of any prior information. This is achieved by building topologically embedded networks containing the subset of most significant links and analyzing the network structure. For a planar embedding, this method provides both the intra-cluster hierarchy, which describes the way clusters are composed, and the inter-cluster hierarchy which describes how clusters gather together. We discuss performance, robustness and reliability of this method by first investigating several artificial data-sets, finding that it can outperform significantly other established approaches. Then we show that our method can successfully differentiate meaningful clusters and hierarchies in a variety of real data-sets. In particular, we find that the application to gene expression patterns of lymphoma samples uncovers biologically significant groups of genes which play key-roles in diagnosis, prognosis and treatment of some of the most relevant human lymphoid malignancies.Comment: 33 Pages, 18 Figures, 5 Table

    A novel prostate cancer subtyping classifier based on luminal and basal phenotypes

    Get PDF
    Background: Prostate cancer (PCa) is a clinically heterogeneous disease. The creation of an expression-based subtyping model based on prostate-specific biological processes was sought. Methods: Unsupervised machine learning of gene expression profiles from prospectively collected primary prostate tumors (training, n = 32,000; evaluation, n = 68,547) was used to create a prostate subtyping classifier (PSC) based on basal versus luminal cell expression patterns and other gene signatures relevant to PCa biology. Subtype molecular pathways and clinical characteristics were explored in five other clinical cohorts. Results: Clustering derived four subtypes: luminal differentiated (LD), luminal proliferating (LP), basal immune (BI), and basal neuroendocrine (BN). LP and LD tumors both had higher androgen receptor activity. LP tumors also had a higher expression of cell proliferation genes, MYC activity, and characteristics of homologous recombination deficiency. BI tumors possessed significant interferon γactivity and immune infiltration on immunohistochemistry. BN tumors were characterized by lower androgen receptor activity expression, lower immune infiltration, and enrichment with neuroendocrine expression patterns. Patients with LD tumors had less aggressive tumor characteristics and the longest time to metastasis after surgery. Only patients with BI tumors derived benefit from radiotherapy after surgery in terms of time to metastasis (hazard ratio [HR], 0.09; 95% CI, 0.01–0.71; n = 855). In a phase 3 trial that randomized patients with metastatic PCa to androgen deprivation with or without docetaxel (n = 108), only patients with LP tumors derived survival benefit from docetaxel (HR, 0.21; 95% CI, 0.09–0.51). Conclusions: With the use of expression profiles from over 100,000 tumors, a PSC was developed that identified four subtypes with distinct biological and clinical features. Plain language summary: Prostate cancer can behave in an indolent or aggressive manner and vary in how it responds to certain treatments. To differentiate prostate cancer on the basis of biological features, we developed a novel RNA signature by using data from over 100,000 prostate tumors—the largest data set of its kind. This signature can inform patients and physicians on tumor aggressiveness and susceptibilities to treatments to help personalize cancer management

    Upregulated sirtuin 1 by miRNA-34a is required for smooth muscle cell differentiation from pluripotent stem cells

    Get PDF
    © 2015 Macmillan Publishers Limited. All rights reserved. microRNA-34a (miR-34a) and sirtuin 1 (SirT1) have been extensively studied in tumour biology and longevityaging, but little is known about their functional roles in smooth muscle cell (SMC) differentiation from pluripotent stem cells. Using well-established SMC differentiation models, we have demonstrated that miR-34a has an important role in SMC differentiation from murine and human embryonic stem cells. Surprisingly, deacetylase sirtuin 1 (SirT1), one of the top predicted targets, was positively regulated by miR-34a during SMC differentiation. Mechanistically, we demonstrated that miR-34a promoted differentiating stem cells' arrest at G0G1 phase and observed a significantly decreased incorporation of miR-34a and SirT1 RNA into Ago2-RISC complex upon SMC differentiation. Importantly, we have identified SirT1 as a transcriptional activator in the regulation of SMC gene programme. Finally, our data showed that SirT1 modulated the enrichment of H3K9 tri-methylation around the SMC gene-promoter regions. Taken together, our data reveal a specific regulatory pathway that miR-34a positively regulates its target gene SirT1 in a cellular context-dependent and sequence-specific manner and suggest a functional role for this pathway in SMC differentiation from stem cells in vitro and in vivo

    Matrix metalloproteinase-9 activity and a downregulated Hedgehog pathway impair blood-brain barrier function in an <i>in vitro</i> model of CNS tuberculosis

    Get PDF
    Central nervous system tuberculosis (CNS TB) has a high mortality and morbidity associated with severe inflammation. The blood-brain barrier (BBB) protects the brain from inflammation but the mechanisms causing BBB damage in CNS TB are uncharacterized. We demonstrate that Mycobacterium tuberculosis (Mtb) causes breakdown of type IV collagen and decreases tight junction protein (TJP) expression in a co-culture model of the BBB. This increases permeability, surface expression of endothelial adhesion molecules and leukocyte transmigration. TJP breakdown was driven by Mtb-dependent secretion of matrix metalloproteinase (MMP)-9. TJP expression is regulated by Sonic hedgehog (Shh) through transcription factor Gli-1. In our model, the hedgehog pathway was downregulated by Mtb-stimulation, but Shh levels in astrocytes were unchanged. However, Scube2, a glycoprotein regulating astrocyte Shh release was decreased, inhibiting Shh delivery to brain endothelial cells. Activation of the hedgehog pathway by addition of a Smoothened agonist or by addition of exogenous Shh, or neutralizing MMP-9 activity, decreased permeability and increased TJP expression in the Mtb-stimulated BBB co-cultures. In summary, the BBB is disrupted by downregulation of the Shh pathway and breakdown of TJPs, secondary to increased MMP-9 activity which suggests that these pathways are potential novel targets for host directed therapy in CNS TB
    corecore