1,048 research outputs found

    Transactivation of EGFR by LPS induces COX-2 expression in enterocytes

    Get PDF
    Necrotizing enterocolitis (NEC) is the leading cause of gastrointestinal morbidity and mortality in preterm infants. NEC is characterized by an exaggerated inflammatory response to bacterial flora leading to bowel necrosis. Bacterial lipopolysaccharide (LPS) mediates inflammation through TLR4 activation and is a key molecule in the pathogenesis of NEC. However, LPS also induces cyclooxygenase-2 (COX-2), which promotes intestinal barrier restitution through stimulation of intestinal cell survival, proliferation, and migration. Epidermal growth factor receptor (EGFR) activation prevents experimental NEC and may play a critical role in LPS-stimulated COX-2 production. We hypothesized that EGFR is required for LPS induction of COX-2 expression. Our data show that inhibiting EGFR kinase activity blocks LPS-induced COX-2 expression in small intestinal epithelial cells. LPS induction of COX-2 requires Src-family kinase signaling while LPS transactivation of EGFR requires matrix metalloprotease (MMP) activity. EGFR tyrosine kinase inhibitors block LPS stimulation of mitogen-activated protein kinase ERK, suggesting an important role of the MAPK/ERK pathway in EGFR-mediated COX-2 expression. LPS stimulates proliferation of IEC-6 cells, but this stimulation is inhibited with either the EGFR kinase inhibitor AG1478, or the selective COX-2 inhibitor Celecoxib. Taken together, these data show that EGFR plays an important role in LPS-induction of COX-2 expression in enterocytes, which may be one mechanism for EGF in inhibition of NEC

    Heterologous production of curcuminoids

    Get PDF
    Curcuminoids, components of the rhizome of turmeric, show several beneficial biological activities, including anticarcinogenic, antioxidant, anti-inflammatory, and antitumor activities. Despite their numerous pharmaceutically important properties, the low natural abundance of curcuminoids represents a major drawback for their use as therapeutic agents. Therefore, they represent attractive targets for heterologous production and metabolic engineering. The understanding of biosynthesis of curcuminoids in turmeric made remarkable advances in the last decade, and as a result, several efforts to produce them in heterologous organisms have been reported. The artificial biosynthetic pathway (e.g., in Escherichia coli) can start with the supplementation of the amino acid tyrosine or phenylalanine or of carboxylic acids and lead to the production of several natural curcuminoids. Unnatural carboxylic acids can also be supplemented as precursors and lead to the production of unnatural compounds with possibly novel therapeutic properties. In this paper, we review the natural conversion of curcuminoids in turmeric and their production by E. coli using an artificial biosynthetic pathway. We also explore the potential of other enzymes discovered recently or already used in other similar biosynthetic pathways, such as flavonoids and stilbenoids, to increase curcuminoid yield and activity.We acknowledge financial support from the Strategic Project PEst-OE/EQB/LA0023/2013, project reference RECI/BBB-EBI/0179/2012 (project number FCOMP-01-0124-FEDER-027462), project SYNBIOBACTHER (PTDC/EBB-BIO/102863/2008), and a doctoral grant (SFRH/BD/51187/ 2010) to J. L. Rodrigues, funded by Fundacao para a Ciencia e a Tecnologia. We thank the MIT-Portugal Program for support given to J. L. Rodrigues

    The Ets dominant repressor En/Erm enhances intestinal epithelial tumorigenesis in ApcMin mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ets transcription factors have been widely implicated in the control of tumorigenesis, with most studies suggesting tumor-promoting roles. However, few studies have examined Ets tumorigenesis-modifying functions <it>in vivo </it>using model genetic systems.</p> <p>Methods</p> <p>Using mice expressing a previously characterized Ets dominant repressor transgene in the intestinal epithelium (Villin-En/Erm), we examined the consequences of blocking endogenous Ets-mediated transcriptional activation on tumorigenesis in the Apc<sup>Min </sup>model of intestinal carcinoma.</p> <p>Results</p> <p>En/Erm expression in the intestine, at levels not associated with overt crypt-villus dysmorphogenesis, results in a marked increase in tumor number in Apc<sup>Min </sup>animals. Moreover, when examined histologically, tumors from En/Erm-expressing animals show a trend toward greater stromal invasiveness. Detailed analysis of crypt-villus homeostasis in these En/Erm transgenic animals suggests increased epithelial turnover as one possible mechanism for the enhanced tumorigenesis.</p> <p>Conclusion</p> <p>Our findings provide <it>in vivo </it>evidence for a tumor-restricting function of endogenous Ets factors in the intestinal epithelium.</p

    Docking and molecular dynamics simulations of the ternary complex nisin2:lipid II

    Get PDF
    Lanthionine antibiotics are an important class of naturally-occurring antimicrobial peptides. The best-known, nisin, is a commercial food preservative. However, structural and mechanistic details on nisin/lipid II membrane complexes are currently lacking. Recently, we have developed empirical force-field parameters to model lantibiotics. Docking and molecular dynamics (MD) simulations have been used to study the nisin2:lipid II complex in bacterial membranes, which has been put forward as the building block of nisin/lipid II binary membrane pores. A Ile1Trp mutation of the N-terminus of nisin has been modelled and docked onto lipid II models; the computed binding affinity increased compared to wildtype. Wild-type nisin was also docked onto three different lipid II structures and a stable 2:1 nisin:lipid II complex formed. This complex was inserted into a membrane. Six independent MD simulations revealed key interactions in the complex, specifically the N terminal engagement of nisin with lipid II at the pyrophosphate and C-terminus of the pentapeptide chain. Nisin2 inserts into the membrane and we propose this is the first step in pore formation, mediated by the nisin N-terminus–lipid II pentapeptide hydrogen bond. The lipid II undecaprenyl chain adopted different conformations in the presence of nisin, which may also have implications for pore formation

    Grain size-dependent magnetic and electric properties in nanosized YMnO3 multiferroic ceramics

    Get PDF
    Magnetic and electric properties are investigated for the nanosized YMnO3 samples with different grain sizes (25 nm to 200 nm) synthesized by a modified Pechini method. It shows that magnetic and electric properties are strongly dependent on the grain size. The magnetic characterization indicates that with increasing grain size, the antiferromagnetic (AFM) transition temperature increases from 52 to 74 K. A corresponding shift of the dielectric anomaly is observed, indicating a strong correlation between the electric polarization and the magnetic ordering. Further analysis suggests that the rising of AFM transition temperature with increasing grain size should be from the structural origin, in which the strength of AFM interaction as well as the electrical polarization is dependent on the in-plane lattice parameters. Furthermore, among all samples, the sample with grain size of 95 nm is found to have the smallest leakage current density (< 1 μA/cm2)

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity

    Acute kidney disease and renal recovery : consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup

    Get PDF
    Consensus definitions have been reached for both acute kidney injury (AKI) and chronic kidney disease (CKD) and these definitions are now routinely used in research and clinical practice. The KDIGO guideline defines AKI as an abrupt decrease in kidney function occurring over 7 days or less, whereas CKD is defined by the persistence of kidney disease for a period of > 90 days. AKI and CKD are increasingly recognized as related entities and in some instances probably represent a continuum of the disease process. For patients in whom pathophysiologic processes are ongoing, the term acute kidney disease (AKD) has been proposed to define the course of disease after AKI; however, definitions of AKD and strategies for the management of patients with AKD are not currently available. In this consensus statement, the Acute Disease Quality Initiative (ADQI) proposes definitions, staging criteria for AKD, and strategies for the management of affected patients. We also make recommendations for areas of future research, which aim to improve understanding of the underlying processes and improve outcomes for patients with AKD

    Cough quality in children: a comparison of subjective vs. bronchoscopic findings

    Get PDF
    BACKGROUND: Cough is the most common symptom presenting to doctors. The quality of cough (productive or wet vs dry) is used clinically as well as in epidemiology and clinical research. There is however no data on the validity of cough quality descriptors. The study aims were to compare (1) cough quality (wet/dry and brassy/non-brassy) to bronchoscopic findings of secretions and tracheomalacia respectively and, (2) parent's vs clinician's evaluation of the cough quality (wet/dry). METHODS: Cough quality of children (without a known underlying respiratory disease) undergoing elective bronchoscopy was independently evaluated by clinicians and parents. A 'blinded' clinician scored the secretions seen at bronchoscopy on pre-determined criteria and graded (1 to 6). Kappa (K) statistics was used for agreement, and inter-rater and intra-rater agreement examined on digitally recorded cough. A receiver operating characteristic (ROC) curve was used to determine if cough quality related to amount of airway secretions present at bronchoscopy. RESULTS: Median age of the 106 children (62 boys, 44 girls) enrolled was 2.6 years (IQR 5.7). Parent's assessment of cough quality (wet/dry) agreed with clinicians' (K = 0.75, 95%CI 0.58–0.93). When compared to bronchoscopy (bronchoscopic secretion grade 4), clinicians' cough assessment had the highest sensitivity (0.75) and specificity (0.79) and were marginally better than parent(s). The area under the ROC curve was 0.85 (95%CI 0.77–0.92). Intra-observer (K = 1.0) and inter-clinician agreement for wet/dry cough (K = 0.88, 95%CI 0.82–0.94) was very good. Weighted K for inter-rater agreement for bronchoscopic secretion grades was 0.95 (95%CI 0.87–1). Sensitivity and specificity for brassy cough (for tracheomalacia) were 0.57 and 0.81 respectively. K for both intra and inter-observer clinician agreement for brassy cough was 0.79 (95%CI 0.73–0.86). CONCLUSIONS: Dry and wet cough in children, as determined by clinicians and parents has good clinical validity. Clinicians should however be cognisant that children with dry cough may have minimal to mild airway secretions. Brassy cough determined by respiratory physicians is highly specific for tracheomalacia
    corecore