37 research outputs found

    Dissipative Dynamics of Polymer Phononic Materials

    Get PDF
    Phononic materials are artificial composites with unprecedented abilities to control acoustic waves in solids. Their performance is mainly governed by their architecture, determining frequency ranges in which wave propagation is inhibited. However, the dynamics of phononic materials also depends on the mechanical and material properties of their constituents. In the case of viscoelastic constituents, such as most polymers, it is challenging to correctly predict the actual dynamic behavior of real phononic structures. Existing studies on this topic either lack experimental evidence or are limited to specific materials and architectures in restricted frequency ranges. A general framework is developed and employed to characterize the dynamics of polymer phononic materials with different architectures made of both thermoset and thermoplastic polymers, presenting qualitatively different viscoelastic behaviors. Through a comparison of experimental results with numerical predictions, the reliability of commonly used elastic and viscoelastic material models is evaluated in broad frequency ranges. Correlations between viscous effects and the two main band-gap formation mechanisms in phononic materials are revealed, and experimentally verified guidelines on how to correctly predict their dissipative response are proposed in a computationally efficient way. Overall, this work provides comprehensive guidelines for the extension of phononics modeling to applications involving dissipative viscoelastic materials.</p

    Efect of maleated anhydride on mechanical properties of rice husk filler reinforced PLA Matrix Polymer Composite

    Get PDF
    Polylactic acid (PLA) formulated from corn starch has a bright potential to replace the non-renewable petroleum-based plastics. The combination of PLA and natural fbre has gained interest due to its unique performance, as reported in many researches and industries. Meanwhile, rice husk produced as the by-product of rice milling can be utilised, unless it is turned completely into waste. Therefore, in the present study, the rice husk powder (RHP) was used as a fller in the PLA, so to determine the infuence of the fller loading on the mechanical properties of the PLA composite. A coupling agent was selected for treatment from two options, i.e., maleic anhydride polypropylene (MAPP) and maleic anhydride polyethylene (MAPE), by applying the agents with various loading contents, such as 2, 4 and 6 wt%. The composite was fabricated by using the hot compression machine. Both the treated and untreated RHP–PLA composites were characterised via the tensile, fexural and impact strength tests. The increase in the RHP loading content led to the decrease in the tensile and fexural strengths. The applications of the coupling agents (MAPE and MAPP) did not improve the tensile and impact strengths, but the fexural strength was enhanced

    Valorization of rice husk silica waste:Organo-amine functionalized castor oil templated mesoporous silicas for biofuels synthesis

    Get PDF
    Rice husk is a rich source of waste silica which has potential for application in the preparation of porous materials for use as catalyst supports or sorbents. Here we report on the synthesis of rice husk silica (RHS) and mesoporous templated rice husk silica (MT-RHS) using sodium silicate, obtained from rice husk ash, and castor oil as a pore directing agent. The resulting silicas were functionalized with 3-aminopropyltriethoxysilane (APTS) or 3-diethylaminopropyltrimethoxysilane (DEPA), and their catalytic activity evaluated in the transesterification of model C4–C12 triglycerides (TAG) to their corresponding fatty acid methyl esters, of relevance to biodiesel synthesis. Castor oil templating enhances the surface area of rice husk silica, and introduces uniform 4 nm mesopores, albeit as a disordered pore network. Post-synthetic grafting of silica by APTS or DEPA resulted in base site loadings of 0.5 and 0.8 mmolg−1 respectively on RHS and MT-RHS. Turnover frequencies of amine-functionalized MT-RHS were 45–65% greater than those of their amine-functionalized RHS counterparts for tributyrin transesterification. Switching from a primary (APTS) to tertiary (DEPA) amine increased activity three-fold, delivering 80% tributyrin conversion to methyl butyrate in 6 h. DEPA-MT-RHS was effective for the transesterification of C8 and C12 triglycerides, with methyl caproate and methyl laurate selectivities of 93% and 71% respectively in 24 h

    Biochemical and cerebral morphometric correlates of physiological aging and senile dementia

    No full text
    corecore