11 research outputs found

    Régulation des voies de signalisation dépendante et indépendante des protéines G activées par le récepteur 5-HT4

    No full text
    MONTPELLIER-BU MĂ©decine UPM (341722108) / SudocMONTPELLIER-BU MĂ©decine (341722104) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    Presenilin-mediated cleavage of APP regulates synaptotagmin-7 and presynaptic plasticity

    No full text
    Mutations in presenilin, which cleaves amyloid precursor protein, cause familial Alzheimer’s Disease. Here, the authors show that loss of presenilin leads to loss of synaptotagmin 7, leading to impaired presynaptic release

    Palmitoylation of the 5-hydroxytryptamine4a receptor regulates receptor phosphorylation, desensitization, and beta-arrestin-mediated endocytosis.

    No full text
    The mouse 5-hydroxytryptamine4a (5-HT4a) receptor is an unusual member of the G protein-coupled receptor superfamily because it possesses two separate carboxyl-terminal palmitoylation sites, which may allow the receptor to adopt different conformations in an agonist-dependent manner (J Biol Chem 277:2534-2546, 2002). By targeted mutation of the proximal (Cys-328/329) or distal (Cys-386) palmitoylation sites, or a combination of both, we generated 5-HT4a receptor variants with distinct functional characteristics. In this study, we showed that upon 5-HT stimulation, the 5-HT4a receptor undergoes rapid (t(1/2) approximately 2 min) and dose-dependent (EC50 approximately 180 nM) phosphorylation on serine residues by a staurosporine-insensitive receptor kinase. Overexpression of GRK2 significantly reduced the receptor-promoted cAMP formation. The Cys328/329-Ser mutant, which is constitutively active in the absence of ligand, exhibited enhanced receptor phosphorylation under both basal and agonist-stimulated conditions and was more effectively desensitized and internalized via a beta-arrestin-2 mediated pathway compared with the wild-type 5-HT4a. In contrast, G protein activation, phosphorylation, desensitization, and internalization of the other palmitoylation-deficient receptor mutants were affected differently. These findings suggest that palmitoylation plays an important role in modulating 5-HT4a receptor functions and that G protein activation, phosphorylation, desensitization, and internalization depend on the different receptor conformations

    Uncoupling and endocytosis of 5-hydroxytryptamine 4 receptors. Distinct molecular events with different GRK2 requirements.

    No full text
    The 5-hydroxytryptamine type 4 receptors (5-HT4Rs) are involved in memory, cognition, feeding, respiratory control, and gastrointestinal motility through activation of a G(s)/cAMP pathway. We have shown that 5-HT4R undergoes rapid and profound homologous uncoupling in neurons. However, no significant uncoupling was observed in COS-7 or HEK293 cells, which expressed either no or a weak concentration of GRK2, respectively. High expression of GRK2 in neurons is likely to be the reason for this difference because overexpression of GRK2 in COS-7 and HEK293 cells reproduced rapid and profound uncoupling of 5-HT4R. We have also shown, for the first time, that GRK2 requirements for uncoupling and endocytosis were very different. Indeed, beta-arrestin/dynamin-dependent endocytosis was observed in HEK293 cells without any need of GRK2 overexpression. In addition to this difference, uncoupling and beta-arrestin/dynamin-dependent endocytosis were mediated through distinct mechanisms. Neither uncoupling nor beta-arrestin/dynamin-dependent endocytosis required the serine and threonine residues localized within the specific C-terminal domains of the 5-HT4R splice variants. In contrast, a cluster of serines and threonines, common to all variants, was an absolute requirement for beta-arrestin/dynamin-dependent receptor endocytosis, but not for receptor uncoupling. Furthermore, beta-arrestin/dynamin-dependent endocytosis and uncoupling were dependent on and independent of GRK2 kinase activity, respectively. These results clearly demonstrate that the uncoupling and endocytosis of 5-HT4R require different GRK2 concentrations and involve distinct molecular events

    ÎČ-arrestin1 phosphorylation by GRK5 regulates G protein-independent 5-HT 4 receptor signalling

    No full text
    International audienceG protein‐coupled receptors (GPCRs) have been found to trigger G protein‐independent signalling. However, the regulation of G protein‐independent pathways, especially their desensitization, is poorly characterized. Here, we show that the G protein‐independent 5‐HT4 receptor (5‐HT4R)‐operated Src/ERK (extracellular signal‐regulated kinase) pathway, but not the Gs pathway, is inhibited by GPCR kinase 5 (GRK5), physically associated with the proximal region of receptor’ C‐terminus in both human embryonic kidney (HEK)‐293 cells and colliculi neurons. This inhibition required two sequences of events: the association of ÎČ–arrestin1 to a phosphorylated serine/threonine cluster located within the receptor C‐t domain and the phosphorylation, by GRK5, of ÎČ–arrestin1 (at Ser412) bound to the receptor. Phosphorylated ÎČ‐arrestin1 in turn prevented activation of Src constitutively bound to 5‐HT4Rs, a necessary step in receptor‐stimulated ERK signalling. This is the first demonstration that ÎČ‐arrestin1 phosphorylation by GRK5 regulates G protein‐independent signalling

    G Protein Activation by Serotonin Type 4 Receptor Dimers: EVIDENCE THAT TURNING ON TWO PROTOMERS IS MORE EFFICIENT*

    No full text
    The discovery that class C G protein-coupled receptors (GPCRs) function as obligatory dimeric entities has generated major interest in GPCR oligomerization. Oligomerization now appears to be a common feature among all GPCR classes. However, the functional significance of this process remains unclear because, in vitro, some monomeric GPCRs, such as rhodopsin and ÎČ2-adrenergic receptors, activate G proteins. By using wild type and mutant serotonin type 4 receptors (5-HT4Rs) (including a 5-HT4-RASSL) expressed in COS-7 cells as models of class A GPCRs, we show that activation of one protomer in a dimer was sufficient to stimulate G proteins. However, coupling efficiency was 2 times higher when both protomers were activated. Expression of combinations of 5-HT4, in which both protomers were able to bind to agonists but only one could couple to G proteins, suggested that upon agonist occupancy, protomers did not independently couple to G proteins but rather that only one G protein was activated. Coupling of a single heterotrimeric Gs protein to a receptor dimer was further confirmed in vitro, using the purified recombinant WT RASSL 5-HT4R obligatory heterodimer. These results, together with previous findings, demonstrate that, differently from class C GPCR dimers, class A GPCR dimers have pleiotropic activation mechanisms
    corecore