310 research outputs found

    Time measurement techniques

    Get PDF
    The common time measurements as used by the U.S. Air Force Measurements and Standards Laboratory, Aerospace Guidance and Metrology Center (AGMC), Newark Air Force Station, Ohio, are described. Electronic counter time interval measurements are emphasized since this is the most common time comparison measurement in use. The proper use and setting of controls will be covered along with helpful hints and common mistakes to be avoided. Applications of time measurements are described and some of these are timekeeping via Loran-C, TV Line-10, and WWV. Frequency determination using periodic time readings will also be discussed

    Inertial navigation/calibration/precise time and frequency capabilities

    Get PDF
    The Aerospace Guidance and Metrology Center was conceived in 1959 to be the US Air Force Inertial Navigation and Metrology Center. This paper will show the mission capabilities of the Inertial Navigation Maintenance Center and the Air Force Measurement and Standards Laboratory. Highlighted will be the precise time and frequency program developed by AGMC to support Air Force precise time and frequency requirements worldwide. A description of the past, present, and future precise time and frequency activities will be presented

    The vertical distribution of aerosols, Saharan dust and cirrus clouds at Rome (Italy) in the year 2001

    No full text
    International audienceA set of 813 lidar profiles of tropospheric aerosol and cirrus clouds extinction and depolarization observed at Rome, Italy, between February 2001 and February 2002 is analyzed and discussed. The yearly record reveals a meaningful contribution of both cirrus clouds (38%) and Saharan dust (12%) to the total optical thickness (OT) of 0.26, at 532 nm. Seasonal analysis shows the planetary boundary layer (PBL) aerosols to be confined below 2 km in winter and 3.8 km in summer, with relevant OT shifting from 0.08 to 0.16, respectively. Cirrus clouds maximize in spring and autumn, in both cases with average OT similar to the PBL aerosols one. With the exception of winter months, Saharan dust is found to represent an important third layer mostly residing between PBL aerosols and cirrus clouds, with yearly average OT~0.03. Saharan dust and cirrus clouds were detected in 20% and in 45% of the observational days, respectively. Validation of the lidar OT retrievals against collocated sunphotometer observations show very good agreement. These results represent one of the few yearly records of tropospheric aerosol vertical profiles available in the literature

    Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001

    Get PDF
    International audienceThe one-year (2001) record of aerosol data from the space borne Moderate Resolution Imaging Spectroradiometer (MODIS) is analyzed focusing on the Mediterranean region. The MODIS aerosol optical thickness standard product (AOT at 550nm) provided over both land and ocean is employed to evaluate the seasonal and spatial variability of the atmospheric particulate over the region. Expected accuracy of the MODIS AOT is (±0.05±0.2xAOT) over land and (±0.03±0.05xAOT) over ocean. The seasonal analysis reveals a significant AOT variability all over the region, with minimum values in Winter (AOT0.2). The spatial variability is also found to be considerable, particularly over land. The impact of some major urban sites and industrialized areas is detectable. For the sole Mediterranean basin, a method (aerosol mask) was implemented to separate the contribution of maritime, continental and desert dust aerosol to the total AOT. Input of both continental and desert dust particles is well captured, showing North-to-South and South-to-North AOT gradients, respectively. A quantitative summary of the AOT seasonal and regional variability is given for different sectors of the Mediterranean basin. Results of this summary were also used to test the aerosol mask assumptions and indicate the method adopted to be suitable for the aerosol type selection. Estimates of the atmospheric aerosol mass load were performed employing specifically-derived mass-to-extinction efficiencies (?). For each aerosol type, a reliable mean ? value was determined on the basis of both lidar measurements of extinction and aerosol models. These estimates indicate a total of 43Mtons of desert dust suspended over the basin during 2001. A comparable value is derived for maritime aerosol. Opposite to the dust case, a minor seasonal variability (within 15%) of maritime aerosol mass is found. This latter result is considered a further check of the suitability of the methodology adopted to separate, on the basis of MODIS data, the three aerosol types which dominate the Mediterranean region

    Therapeutic implications of immunogenic cell death in human cancer

    Get PDF
    Dendritic cells (DCs) are central to the adoptive immune response, and their function is regulated by diverse signals in a context-specific manner. Different DCs have been described in physiologic conditions, inflammation, and cancer, prompting a series of questions on how adoptive immune responses, or tolerance, develop against tumors. Increasing evidence suggests that tumor treatments induce a dramatic change on tumor-infiltrating lymphocytes and, in particular, on some DC subtypes. In this review, we summarize the latest evidence on the role of DCs in cancer and preliminary evidence on chemotherapy-associated antigens identified in human cancers

    An important fingerprint of wildfires on the European aerosol load

    Get PDF
    Abstract. Wildland fires represent the major source of fine aerosols, i.e., atmospheric particles with diameters <1 μm. The largest numbers of these fires occur in Africa, Asia and South America, but a not negligible fraction also occurs in Eastern Europe and former USSR countries, particularly in the Russian Federation, Ukraine and Kazakhstan. Besides the impact of large forest fires, recent studies also highlighted the crucial role played by routine agricultural fires in Eastern Europe and Russia on the Arctic atmosphere. An evaluation of the impact of these fires over Europe is currently not available. The assessment of the relative contribution of fires to the European aerosol burden is hampered by the complex mixing of natural and anthropogenic particle types across the continent. In this study we use long term (2002–2007) satellite-based fires and aerosol data coupled to atmospheric trajectory modelling in the attempt to estimate the wildfires contribution to the European aerosol optical thickness (AOT). Based on this dataset, we provide evidence that fires-related aerosols play a major role in shaping the AOT yearly cycle at the continental scale. In general, the regions most impacted by wildfires emissions and/or transport are Eastern and Central Europe as well as Scandinavia. Conversely, a minor impact is found in Western Europe and in the Western Mediterranean. We estimate that in spring 5 to 35% of the European fine fraction AOT (FFAOT) is attributable to wildland fires. The estimated impact maximizes in April (20–35%) in Eastern and Central Europe as well as in Scandinavia and in the Central Mediterranean. An important contribution of wildfires to the FFAOT is also found in summer over most of the continent, particularly in August over Eastern Europe (28%) and the Mediterranean regions, from Turkey (34%) to the Western Mediterranean (25%). Although preliminary, our results suggest that this fires-related, continent-wide haze plays a not negligible role on the European radiation budget, and possibly, on the European air quality, therefore representing a clear target for mitigation

    Karst geomorphology of the “Canale di Pirro” polje, Apulia (Southern Italy).

    Get PDF
    In karst environment, a geomorphological map is a powerful instrument, which play a crucial role in understanding earth surface processes and landscape evolution. Furthermore, it could be very useful for speleological perspectives, natural resources exploitation and geo-hazards management (flood, sinkhole, subsidence, etc.), providing useful information that enhance the knowledge of the territory. In this work, we present a geomorphological map of the polje of “Canale di Pirro”, sited in the central part of Apulia Region, in Southern Italy, among the most interesting karst lands in the Mediterranean area. The map covers150km2withanelevationrangeof100-450ma.s.l.Thisareaisoneofthemostremarkablekarstlandforms in the region, characterized underground by a very interesting system of caves, that reaches the water table at a depth of -264 meters. The karst system, known as “Inghiottitoio di Masseria Rotolo”, following scuba-diving exploration below the watertable, has become with a depth of 324m, the deepest known cave in Apulia. The polje is bounded on both sides by tectonically-controlled ridges, showing an overall length of some 12 km. In ancient maps, dating back to the 16th century, the area is represented as crossed by a long river, called Cana. The map obtained derives from the integration of interpretation of aerial photographs, analysis of a digital elevation model and field surveys in order to obtain a correct distribution of landforms and fluvial processes, such as different varieties of karst depressions, conical hills, erosional gullies, alluvial fans and tectonic structures. It provides relevant information about the surface drainage processes, and for understanding, among other things, the groundwater circulation and the related recharge processes. This geomorphological map is part of a wider project, that combined geological, hydrogeological research and chemical analyses of the groundwater. It provides support to the ongoing studies of this part of Apulia region aimedto betterunderstand thegeological processes that originatedthe polje and its later evolution, and the related underground cave system. Further, it might also suggest possible improvements in land management and in the future choice of useful tools for the control of the quality and quantity of karst groundwater

    A multiwavelength numerical model in support of quantitative retrievals of aerosol properties from automated lidar ceilometers and test applications for AOT and PM10 estimation

    Get PDF
    Abstract. The use of automated lidar ceilometer (ALC) systems for the aerosol vertically resolved characterization has increased in recent years thanks to their low construction and operation costs and their capability of providing continuous unattended measurements. At the same time there is a need to convert the ALC signals into usable geophysical quantities. In fact, the quantitative assessment of the aerosol properties from ALC measurements and the relevant assimilation in meteorological forecast models is amongst the main objectives of the EU COST Action TOPROF ("Towards operational ground-based profiling with ALCs, Doppler lidars and microwave radiometers for improving weather forecasts"). Concurrently, the E-PROFILE program of the European Meteorological Services Network (EUMETNET) focuses on the harmonization of ALC measurements and data provision across Europe. Within these frameworks, we implemented a model-assisted methodology to retrieve key aerosol properties (extinction coefficient, surface area, and volume) from elastic lidar and/or ALC measurements. The method is based on results from a large set of aerosol scattering simulations (Mie theory) performed at UV, visible, and near-IR wavelengths using a Monte Carlo approach to select the input aerosol microphysical properties. An average "continental aerosol type" (i.e., clean to moderately polluted continental aerosol conditions) is addressed in this study. Based on the simulation results, we derive mean functional relationships linking the aerosol backscatter coefficients to the abovementioned variables. Applied in the data inversion of single-wavelength lidars and/or ALCs, these relationships allow quantitative determination of the vertically resolved aerosol backscatter, extinction, volume, and surface area and, in turn, of the extinction-to-backscatter ratios (i.e., the lidar ratios, LRs) and extinction-to-volume conversion factor (cv) at 355, 532, and 1064 nm. These variables provide valuable information for visibility, radiative transfer, and air quality applications. This study also includes (1) validation of the model simulations with real measurements and (2) test applications of the proposed model-based ALC inversion methodology. In particular, our model simulations were compared to backscatter and extinction coefficients independently retrieved by Raman lidar systems operating at different continental sites within the European Aerosol Research Lidar Network (EARLINET). This comparison shows good model–measurement agreement, with LR discrepancies below 20 %. The model-assisted quantitative retrieval of both aerosol extinction and volume was then tested using raw data from three different ALCs systems (CHM 15k Nimbus), operating within the Italian Automated LIdar-CEilometer network (ALICEnet). For this purpose, a 1-year record of the ALC-derived aerosol optical thickness (AOT) at each site was compared to direct AOT measurements performed by colocated sun–sky photometers. This comparison shows an overall AOT agreement within 30 % at all sites. At one site, the model-assisted ALC estimation of the aerosol volume and mass (i.e., PM10) in the lowermost levels was compared to values measured at the surface level by colocated in situ instrumentation. Within this exercise, the ALC-derived daily-mean mass concentration was found to reproduce the corresponding (EU regulated) PM10 values measured by the local air quality agency well in terms of both temporal variability and absolute values. Although limited in space and time, the good performances of the proposed approach suggest it could possibly represent a valid option to extend the capabilities of ALCs to provide quantitative information for operational air quality and meteorological monitoring

    Lidar and in situ observations of continental and Saharan aerosol: closure analysis of particles optical and physical properties

    Get PDF
    Single wavelength polarization lidar observations collected at Mt. Cimone (44.2º N, 10.7º E, 1870 m a.s.l.) during the June 2000 MINATROC campaign are analyzed to derive tropospheric profiles of aerosol extinction, depolarization, surface area and volume. Lidar retrievals for the 2170-2245 m level are compared to the same variables as computed from in situ measurements of particles size distributions, performed at the mountain top Station (2165 m a.s.l.) by a differential mobility analyzer (DMA) and an optical particle counter (OPC). A sensitivity analysis of this closure experiment shows that mean relative differences between the backscatter coefficients obtained by the two techniques undergo a sharp decrease when hygroscopic growth to ambient humidity is considered for the DMA dataset, otherwise representative of dry aerosols. Minimization of differences between lidar and size distribution-derived backscatter coefficients allowed to find values of the &quot;best&quot; refractive index, specific to each measurement. These results show the refractive index to increase for air masses proceeding from Africa and Western Europe. Lidar depolarization was observed to minimize mainly in airmasses proceeding from Western Europe, thus indicating a spherical, i.e. liquid nature for such aerosols. Conversely, African, Mediterranean and East Europe aerosol showed a larger depolarizing fraction, mainly due to coexisting refractory and soluble fractions. The analysis shows average relative differences between lidar and in-situ observations of 5% for backscatter, 36% for extinction 41% for surface area and 37% for volume. These values are well within the expected combined uncertainties of the lidar and in situ retrievals. Average differences further decrease during the Saharan dust transport event, when a lidar signal inversion model considering non-spherical scatterers is employed. The quality of the closure obtained between particle counter and lidar-derived aerosol surface area and volume observations constitutes a validation of the technique adopted to retrieve such aerosol properties on the basis of single-wavelength lidar observations
    corecore