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Abstract. The one-year (2001) record of aerosol data from
the space borne Moderate Resolution Imaging Spectrora-
diometer (MODIS) is analyzed focusing on the Mediter-
ranean region. The MODIS aerosol optical thickness stan-
dard product (AOT at 550 nm) provided over both land and
ocean is employed to evaluate the seasonal and spatial vari-
ability of the atmospheric particulate over the region. Ex-
pected accuracy of the MODIS AOT is (±0.05±0.2×AOT)
over land and (±0.03±0.05×AOT) over ocean. The sea-
sonal analysis reveals a significant AOT variability all over
the region, with minimum values in Winter (AOT<0.15) and
maximum in Summer (AOT>0.2). The spatial variability is
also found to be considerable, particularly over land. The
impact of some major urban sites and industrialized areas
is detectable. For the sole Mediterranean basin, a method
(aerosol mask) was implemented to separate the contribution
of maritime, continental and desert dust aerosol to the total
AOT. Input of both continental and desert dust particles is
well captured, showing North-to-South and South-to-North
AOT gradients, respectively. A quantitative summary of the
AOT seasonal and regional variability is given for different
sectors of the Mediterranean basin. Results of this sum-
mary were also used to test the aerosol mask assumptions
and indicate the method adopted to be suitable for the aerosol
type selection. Estimates of the atmospheric aerosol mass
load were performed employing specifically-derived mass-
to-extinction efficiencies (α). For each aerosol type, a reli-
able meanα value was determined on the basis of both lidar
measurements of extinction and aerosol models. These esti-
mates indicate a total of 43 Mtons of desert dust suspended
over the basin during 2001. A comparable value is derived
for maritime aerosol. Opposite to the dust case, a minor sea-
sonal variability (within 15%) of maritime aerosol mass is
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found. This latter result is considered a further check of the
suitability of the methodology adopted to separate, on the ba-
sis of MODIS data, the three aerosol types which dominate
the Mediterranean region.

1 Introduction

The great effort spent over the last decade by the scien-
tific community to investigate atmospheric particulate mat-
ter reflects the importance attributed to aerosol in control-
ling the Earth’s climate (e.g. Penner et al., 2001). Major
advancements in the field have been fostered by a new gen-
eration of space based instruments (e.g. ATSR-2 on board
the ESA-ERS2, MODIS and MISR on board the NASA
Terra, POLDER on board the ADEOS), specifically devel-
oped to facilitate detection and characterization of atmo-
spheric aerosols (e.g. King et al., 1999). A large amount
of space-retrieved aerosol data has been produced in recent
years and, after the initial period of quality checking (e.g.
Chu et al., 2002; Remer et al., 2002; Chu et al., 2003; Levy
et al., 2003; Liu et al., 2004), validated information is now
becoming available. Even though further improvement of
aerosol dedicated instruments and inversion techniques is
still needed, it is important to exploit the large, routinely
available set of data, particularly considering the unique po-
tential of space-based observations in terms of spatial cover-
age.

On this basis, a one-year-dataset (2001) of the aerosol opti-
cal thickness operational product (AOT) from the Moderate-
resolution Imaging Spectroradiometer (MODIS, on board the
NASA platform Terra) has been employed and analyzed to
get a picture of the aerosol seasonal and regional variability
over the Mediterranean region. This study was performed
in combination with the analysis by Gobbi et al. (2004) in
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which the record of lidar soundings collected in the year
2001 was used to characterize the seasonal variability of the
aerosol vertical distribution over Rome (Italy), as representa-
tive of Central Mediterranean conditions.

The Mediterranean represents a unique area in terms of
suspended particulate matter. Bounded to the north by the
European continent and to the south by the North Africa arid
regions, it is largely affected by both Saharan dust, anthro-
pogenic aerosols and, of course, maritime aerosols. Trans-
port of Saharan dust from the North African coasts to the
Mediterranean and Europe has been widely investigated (ei-
ther as long term analyses or as “case studies”) employing in
situ samplings (e.g. Molinaroli et al., 1993; Loye-Pilot and
Martin, 1996; Avila et al., 1998; Kubilay et al., 2000; Col-
laud Coen et al., 2003), lidar (e.g. Hamonou et al., 1999;
Gobbi et al., 2000; Di Sarra, et al., 2001; Muller et al.,
2003; De Tomasi et al., 2003; Dulac and Chazette, 2003;
Gobbi et al., 2004) and satellite observations (e.g. Dulac et
al., 1992a; Moulin et al., 1998; Israelevich et al., 2002).
Conversely, studies of the export of particles from the Eu-
ropean continent (i.e. mainly pollution-related cases) to the
Mediterranean Sea are still limited. However, a growing in-
terest in this topic is now emerging. A recent international
effort to quantify the impact of anthropogenic emissions on
the natural background of the Mediterranean environment is
represented by the Mediterranean Intensive Oxidant Study
(MINOS). Largely based on experimental results, the MI-
NOS project highlighted the important role of pollutants in
the summertime Mediterranean atmosphere (e.g. Lelieveld,
2002). Models have also been usefully employed to investi-
gate the export pathways of air pollution from Europe (e.g.
Stohl et al., 2002; Duncan and Bey, 2004). Still, Duncan
and Bey (2004) point out the current lack of observations of
pollution-related parameters to be compared to model results
in the European region.

The strength of the dust outbreaks over the Mediterranean
tends to facilitate the Saharan dust detection by both ground
and space based observations, allowing the quantification of
its transport and of its optical and microphysical properties.
As opposite to Saharan dust, investigation of the export of
particulate matter from the industrialized countries surround-
ing the Mediterranean (in the following referred to as “conti-
nental aerosols”) is complicated by the fact that an extremely
large number of species and gas precursors (including inor-
ganic and organic compounds) contribute to it. In analyzing
space-based observations, such a complexity can partly be
reduced focusing on some specific physical and optical prop-
erties of these particles. In fact, continental aerosol is recog-
nized to be mainly composed of fine particles (r<0.6µm)
so that their optical properties are strongly dominated by the
aerosol fine fraction (e.g. Dubovik et al., 2002; Kaufman et
al., 2002).

In this study we perform a seasonal analysis of the
MODIS-derived AOT field over the Mediterranean region
(land and ocean) to investigate the aerosol’s seasonal and re-

gional patterns. Moreover, we evaluate the contribution to
the total AOT of continental and desert-dust aerosols over
the Mediterranean basin (in addition to the maritime aerosol
one). This result is obtained by implementing a simple
scheme (hereafter referred to as “aerosol mask”) that com-
bines the MODIS operational retrieval of the aerosol optical
thickness with a second MODIS product (the fine fraction)
indicating the relative contribution of the fine particles to the
total AOT. The aerosol mask scheme is described in Sect. 2,
together with examples of its application to specific case
studies. In Sect. 3, results are presented in terms of season-
ally averaged maps of both total AOT and relative AOT con-
tributions of maritime, continental and desert dust aerosols.
A summary of the aerosol seasonal variability is then given
in Sect. 3.1, where regional analysis is performed by divid-
ing the Mediterranean basin into ten different sectors. Es-
timates of the aerosol mass load in the ten sectors of the
Mediterranean basin are then given in Sect. 3.2. These have
been obtained, for the three different aerosol types, employ-
ing appropriate mass-to-extinction efficiencies (α=AOT/M)
derived from lidar observations and model-based results. In
order to focus Sect. 3.2 on the presentation and discussion of
results, the procedure employed to derive theα factors is de-
scribed in Appendix A. In Sect. 3.2, the Mediterranean sec-
tors summary is also employed as a test of the aerosol mask
capability to actually discriminate between the three aerosol
types addressed in this study.

2 Methods

The Moderate Resolution Imaging Spectroradiometer
(MODIS) was launched in December 1999 on the polar
orbiting NASA-EOS Terra spacecraft. Terra’s sun-
synchronous orbit has a dayside equatorial 10:30 am local
crossing time. Since February 2000, MODIS data are
acquired in 36 spectral bands from the visible to the thermal
infrared. A nearly global image is produced daily thanks
to the instrument scanning angle of 110◦ (i.e. swath width
of 2330 km). Aerosol retrievals from MODIS data are
performed over land and ocean surfaces by means of
two separate algorithms thoroughly described in Kauf-
man and Tanŕe (1998). Aerosol products are stored in
MODIS Level 2 (MOD04L2) files, each corresponding
to five-minute-acquisition along the satellite orbit. The
two aerosol products employed in this study are: 1) the
optical thickness at 550 nm (MOD04L2 Scientific Data
Set: OpticalDepthLand And Ocean, in the following
referred to as AOT) and 2) the fine fraction (MOD04L2
Scientific Data Set: OpticalDepthRatio Small Ocean, in
the following referred to as FF). This latter is defined as
the ratio of optical thickness of small mode vs effective
optical thickness at 550 nm. Both products are given at
a spatial resolution of 10×10 km (at nadir). The AOT is
provided over both land and ocean merging the two different
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retrievals developed for the two different surfaces. The fine
fraction product is only operational over ocean surfaces
(although Chu et al., (2003) showed that separation of fine
and coarse particles over land is possible by comparing the
path radiances at 660 and 470 nm). As discussed in detail in
the MODIS aerosol products validation studies, a different
accuracy is associated to the MODIS AOT retrievals over
land (1AOTland=±0.05±0.2 AOT; Chu et al., 2002; Chu et
al., 2003) and over ocean (1AOTocean=±0.03±0.05 AOT;
Remer et al., 2002). Over land, errors larger than1AOTland
can be found in coastal zones due to sub-pixel water contam-
ination. This effect tends to produce an AOT overestimation
(Chu et al., 2003). Over ocean, the validation by Remer
et al. (2002) shows the major uncertainties to occur at
small optical thickness, when the aerosol contribution to
the measured radiance is low and surface contributions (as
foam and water color) can be misinterpreted. Similarly, a
significant water color contribution can reduce the ocean
AOT retrieval quality in coastal areas. Largely based on
Mediterranean test sites, the study by Remer et al. (2002)
also indicates the particle size-dependent parameters (as the
FF) to be retrieved with an accuracy within±25%.

In this work, daily MODIS observations over the Mediter-
ranean region (about three L2 files per day) were collected
for the whole year 2001 (except for the period 15 June–3
July, due to instrumental problems). For each L2 file, AOT
and FF data were binned into a 0.1◦

×0.1◦ grid (i.e. about
10×10 km pixels), corresponding to the geographical area
within the latitude and longitude ranges 30◦ N–50◦ N and
10◦ W–35◦ E, respectively. The derived 0.1-degree-binned
AOT data were then averaged on a seasonal basis, the four
seasons being defined asDJF (December-January-February,
i.e. Winter), MAM (March-April-May, i.e. Spring), JJA
(June-July-August, i.e. Summer),SON(September-October-
November, i.e. Fall). Moreover, for each L2 file, AOT and
FF data were jointly analyzed (in co-located 0.1-degree-bins)
to distinguish between maritime, continental and desert dust
aerosol following the method described in Sect. 2.1. Then,
for each season, the contribution of the three aerosol types to
the total, mean AOT was computed.

2.1 The aerosol mask

In order to reduce the complexity of the atmospheric aerosol
system, some general categories can be identified on the ba-
sis of the particles origin. In particular, over the Mediter-
ranean, three main aerosol types are expected to dominate
the atmospheric load: 1) maritime aerosol produced on the
sea surface by winds; 2) continental aerosol originating in
the industrialized countries surrounding the Mediterranean
Sea from both anthropogenic and non-anthropogenic activi-
ties (e.g. fossil fuel combustion, industrial activity, soil ero-
sion); 3) desert dust lifted into the Mediterranean atmosphere
from the North African arid regions. Produced by such dif-
ferent mechanisms, these aerosol types generally show sub-
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Fig. 1. Aerosol mask defining the regions corresponding to con-
tinental, desert dust and maritime aerosol (green, yellow and blue
areas, respectively) in the Fine Fraction (FF) versus Aerosol Optical
Thickness (AOT) space.

stantially different optical and physical properties (e.g. Kauf-
man et al., 2002). In fact, in urban/industrial conditions, op-
tical properties are dominated by fine particles (e.g. Remer
and Kaufman, 1998; Dubovik et al., 2002) while, in the pres-
ence of desert dust, these are strongly dominated by coarse
particles. In maritime conditions, the relative contribution
of coarse particles, although variable (Smirnov et al., 2002),
is generally higher than in urban/industrial conditions and
lower than for desert dust (e.g. Dubovik et al., 2002).

Following the previous considerations, we implemented a
simple method (aerosol mask) to separate the contribution of
the three aerosol types over the Mediterranean Sea, based on
the combination of the MODIS AOT and FF data. In par-
ticular, we proceeded with defining which regions of the FF
vs. AOT space would be peculiar to the three aerosol types.
The following considerations were taken into account to de-
fine the three regions limits shown in Fig. 1 (blue, green
and yellow portions corresponding to maritime, continen-
tal and desert dust aerosol, respectively). As opposite to
remote oceanic regions, it is particularly difficult to define
“pure maritime conditions” in inland seas as the Mediter-
ranean. Avoiding the most turbid conditions (associated to
Saharan dust transport), in the Mediterranean one can dis-
tinguish between clean atmospheres, when AOT values are
close to the ones registered in background oceanic regions
(i.e. AOT≤0.1), and “standard” atmospheres, wherein the
mean AOT is in the range 0.2–0.3 (Smirnov et al., 1995,
2002). Although the latter values can appear as rather high if
compared to the ones typical of open oceanic areas, a mean
AOT of 0.29 ±0.22 is actually found when averaging the
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11 AOT values referring to the Mediterranean Sea and col-
lected by Smirnov et al. (2002) on the basis of 30 years of
published data. This average value becomes 0.18±0.11 when
AOTs>0.5 are not considered as possibly “contaminated” by
non-maritime aerosols. We have therefore set to 0.3 the up-
per limit of maritime AOT in our scheme. Due to the vari-
ability of both meteorological conditions (relative humidity,
mean wind speed) and contamination sources (dust, smoke,
urban-industrial aerosols), a significant spread is generally
observed in the relative weight of fine and coarse particles
in maritime environments. Over the Atlantic and the Pacific
Ocean (to which most observations in the literature refer), the
fine aerosol contribution to the total AOT is found to reach
values up to about 70% (e.g. Kaufman et al., 2001; Kaufman
et al., 2002). In our scheme, we have allowed the fine frac-
tion of maritime aerosol to vary up to 0.8 (see Fig. 1). These
assumptions would classify as “maritime aerosol” both dusty
conditions with AOT<0.3 and continentally-affected condi-
tions with AOT<0.3 and FF<0.8. This choice avoids defi-
nition of areas of “uncertain aerosol type” in Fig. 1 and pre-
vents us from over predicting the presence of both continen-
tal and/or desert dust particles over the Mediterranean. Being
very simple, this scheme is certainly associated to some mar-
gin of error (i.e. incorrect aerosol type interpretation), par-
ticularly at the border lines of the three regions. In this re-
spect, the outcome of the aerosol mask will be evaluated on
the basis of specific cases registered in 2001 in the follow-
ing section, whereas the overall (statistical) performance of
this scheme will be assessed on the basis of the whole 2001
record in Sect. 3.1.

2.2 Individual tests of the aerosol mask

Four cases are presented to show the response of the aerosol
mask to different aerosol conditions. The latter have been
evaluated on the basis of both satellite true-color images
(SeaWiFS Mediterranean pictures, as composite of im-
ages acquired approximately between 10:00 and 13:00 UT,
i.e. almost in coincidence with the MODIS overpass) and
wind fields at 700 mb, 850 mb and 925 mb (images from
the NOAA CIRES Climate Diagnostic Center, based on
NCEP/NCAR re-analysis, Kalnay et al., 1996). Wind fields
are found to be particularly useful in evaluating the trans-
port of continental aerosols. In fact, as opposite to desert
dust transport (mostly associated to high AOTs), pollution-
related plumes are often associated to low aerosol optical
thicknesses. In such conditions, the limited aerosol load in
the atmospheric column does not allow its identification in
the true-color images. This also means that, in these cases,
the fine fraction parameter plays a major role in the aerosol
type classification.

The first test case, reported in Fig. 2, refers to 26 March
2001, when a dust plume was blown eastward from the
Tunisian/Libyan coasts. The SeaWiFS image (Fig. 2a)
clearly reveals the geographical extension of the dust plume

moving northeast through the Central Mediterranean and
reaching up to the Black Sea. The outcome of the aerosol
mask applied to this event is shown in Fig. 2b. Here the pro-
posed method appears to reproduce the dust pattern over the
Mediterranean. In particular, the southern (cloud-free) edge
of the dust plume is well identified (note that in this plot, and
in the following case studies, the green border line between
the yellow dust plume and the blue maritime aerosol region
is falsely produced by the graphical interpolation. In fact,
no green border is visible when the dust plume is bounded
by black, i.e. unclassified, regions). As opposed to Saha-
ran dust, the mask-derived presence of continental aerosols
in Fig. 2b (revealed at the eastern coasts of Spain and over
the Gulf of Lion, South France) is not as evident in the Sea-
WiFS image. An explanation of the aerosol mask outcomes
can be derived considering the relevant wind field shown in
Fig. 2c. In this plot, the westerly circulation affecting both
Spain and Southern France is likely to transport continental
aerosols from those regions over the Mediterranean Sea. The
wind field in Fig. 2c also confirms the dust advection over
the Central/Eastern Mediterranean and further indicates the
dust transport to mainly occur at the upper levels. In par-
ticular, winds mainly drive dust from Libya to the Eastern
Mediterranean at 850 mb (central panel) while strong winds
(v>16 m/s) from Algeria and Tunisia also advect dust to the
Central Mediterranean at 700 mb (bottom panel).

The second case, reported in Fig. 3, refers to the following
day, i.e. 27 March, when some residual dust was still uplifted
eastward from the Libyan coasts as revealed by the SeaW-
iFS image. The corresponding outcome of the aerosol mask
reported in Fig. 3b shows that the dust plume from Libya
is well detected. Agreement between Fig. 3a and b is also
found over the Black Sea and in the Cyprus region, where
both the true color SeaWiFS image and the aerosol mask re-
veal the presence of dust. In this case, wind fields in Fig. 3c
indicate the dust transport to mainly occur at upper levels
(P<850 mb), a piece of information that cannot be derived
from the true color image of Fig. 3a on its own. Although no
evidence of haze is visible in Fig. 3a, the aerosol mask indi-
cates aerosol of anthropogenic origin off the Sardinian coasts
in Fig. 3b. Westerly winds flowing over the island (Fig. 3c)
are compatible with this result.

The third case, reported in Fig. 4, refers to 1 August
2001. The SeaWiFS picture in Fig. 4a shows two differ-
ent conditions characterizing the Western and the Eastern
Mediterranean, respectively. A well defined dust plume is
visible in Fig. 4a, extending from North West Africa north-
ward to Spain and eastward towards Sardinia. Conversely,
the Eastern Mediterranean is covered by an inhomogeneous
haze layer. The outcome of the relevant aerosol mask is re-
ported in Fig. 4b. Here, the presence of dust is well identi-
fied. In particular, the north-eastern edge of the dust plume
visible in Fig. 4a is well reproduced in Fig. 4b. In the lat-
ter, dust is also detected over the Gulf of Biscay (Northern
Spain), a region covered by clouds in Fig. 4a but definitely
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Fig. 2. Conditions over the Mediterranean on 26 March 2001:(a) True color image (from SeaWiFS),(b) corresponding aerosol mask
outcome from MODIS FF and AOT data (blue, green and yellow areas corresponding to maritime, continental and desert dust aerosol,
respectively), and(c) mean daily composite wind fields at 925, 850 and 700 mb (top, central and bottom panel, respectively; the color bar
indicates the wind speed in m/s; data from NOAA-CIRES based on NCEP/NCAR reanalysis).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                      
 
 
 
 
Figure 3 
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Fig. 3. As in Fig. 2 but case of 27 March 2001.
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Figure 4 
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Fig. 4. As in Fig. 2 but case of 1 August 2001.

subject to advection from the North West Saharan regions
(i.e. Fig. 4c). In the Eastern Mediterranean the aerosol mask
identifies a dominance of continental particles corresponding
to the hazy region in Fig. 4a. The origin of such haze is sug-
gested by the wind maps of Fig. 4c. In fact, a North-easterly
flow characterizes the Eastern Mediterranean at lower lev-
els (925, 850 mb), with the strongest winds (v≥8 m/s) in
the region within Southern Italy and Crete. This advection
pattern is likely to transport over the Mediterranean anthro-
pogenic aerosol from Eastern Europe (Romania, Bulgaria)
and Turkey and is therefore consistent with the aerosol mask
results of Fig. 4b. As a matter of fact, in August 2001 the
Mediterranean Intensive Oxidant Study (MINOS) conducted
in Crete (Lelieveld et al., 2002) well highlighted the strong
advection of pollutants over the Mediterranean caused by
the northerly transport occurring at the lower levels (Sciare,
2003a). It is worth noticing that, in contrast to the pollution
advection pattern occurring at the lower levels, the wind field
in Fig. 4c indicates dust transport over the Western Mediter-
ranean to mainly occur at the higher levels (850, 700 mb).

The fourth case study reported in Fig. 5 refers to 13 Oc-
tober 2001. The SeaWiFS true color image in Fig. 5a re-
veals a complex atmospheric pattern over the Mediterranean
with the presence of both dust and haze, characterizing the
western and eastern basin, respectively. In addition, a hazy
layer is visible over the Po Valley region (Northern Italy), the
Italian east coasts and, partially, over the Adriatic Sea. The
corresponding outcome of the aerosol mask derived from

MODIS data is reported in Fig. 5b. This latter clearly depicts
the dust plume transported northward from Algeria and well
reproduces both the east and west plume edges. Both East-
ern Mediterranean and Adriatic Sea haze layers of Fig. 5a are
mainly interpreted as continental aerosol in Fig. 5b. How-
ever, some minimal misinterpretation of haze as dust is ob-
served. This is mainly produced by the fine fraction being
lower than 0.7 in those regions. As mentioned in Sect. 2.1,
some percentage of misinterpreted pixels was expected to be
associated to the proposed aerosol mask. For this day, wind
fields in Fig. 5c suggest advection patterns transporting con-
tinental aerosol South-westward to the Mediterranean basin
at the lower levels (from Turkey, Bulgaria, Greece) and Sa-
haran dust transported higher up in the atmosphere from the
African continent. In this respect, the four cases presented
confirm the general particle type-dependent aerosol vertical
displacement observed by lidar at a Central Mediterranean
site (Gobbi et al., 2004), with desert dust dominating the al-
titude range 2–6 km and continental aerosol prevailing in the
boundary layers.

Overall, these results indicate that the aerosol mask per-
forms rather well at distinguishing between maritime, con-
tinental and desert dust aerosol on the basis of the standard
MODIS AOT and FF products. This approach was therefore
employed to estimate seasonal contributions of each aerosol
type to the total AOT over the Mediterranean. Relevant re-
sults are discussed hereafter.
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Figure 5 

(c) (a) 

(b) 

Fig. 5. As in Fig. 2 but case of 13 October 2001.

3 Results and discussion

Results of the data analysis are reported in Figs. 6 to 9,
referring respectively to the four seasonsDJF, MAM, JJA
andSON. In each figure, plot a) shows the total mean sea-
sonal aerosol optical thickness (AOTS at 550 nm, given over
both land and ocean) whereas plots b), c) and d) show the
mean contribution to AOTS of, respectively, maritime, desert
dust and continental aerosol over the basin (AOT∗

S,type
, the

subscript “type” indicating continental (“cont”), maritime
(“mar”) or desert dust (“dust”) aerosols). A detailed defini-
tion of the variables AOTS and AOT∗

S,type
is given hereafter.

A synopsis of the whole set of aerosol optical thickness vari-
ables discussed in this study is provided in Table 1.

For each 0.1◦×0.1◦ pixel, the AOT average over the sea-
sonS, AOTS , is defined as:

AOTS=
1

NS

NS∑
j=1

AOTj (1)

where NS is the total number of AOT retrievals (AOTj ) in
the seasonS.

Over the ocean, an aerosol type (continental, maritime or
desert dust) is associated to each retrieved AOTj employing

the mask described in Sect. 2.2. Therefore, for each seasonS
(and for each ocean pixel), the mean AOT associated to the
three aerosol types is computed as:

AOTS,type=
1

NS,type

NS,type∑
j=1

AOTtype,j (2)

where NS,type is the total number of AOTs classified as
“type” (i.e. AOTtype,j ) in that pixel during the seasonS.

For each ocean pixel, the seasonal frequency
of occurrence of each aerosol type,fS,type, is
also derived as fS,type=NS,type/NS (thus resulting
fS,cont+fS,mar+fS,dust=1). This parameter allows one
to calculate the mean seasonal contribution of each aerosol
type to the total AOTS as:

AOTS,type
∗=fS,type · AOTS,type (3)

Therefore we have, for each pixel,
AOTS=AOT∗

S,cont
+AOT∗

S,mar
+AOT∗

S,dust
.

In Figs. 6a to 9a, missing data (black areas) are found over
bright surfaces (e.g. scarcely vegetated areas or regions cov-
ered by snow) where the MODIS retrieval is not performed
(Kaufman et al., 1997) or in regions corresponding to a per-
sistent presence of clouds during the whole season. In gen-
eral, occurrence of cloudy pixels in the investigated region

www.atmos-chem-phys.org/acp/4/2367/ Atmos. Chem. Phys., 4, 2367–2391, 2004



2374 F. Barnaba and G. P. Gobbi: Aerosol seasonal variability over the Mediterranean region

 
 
 
 
 
          
 
 
 
 
 
 

 
 
 

 
 
 
 

        0.1  0.15  0.20  0.25  0.30 0.35 0.40  0.45 

  0.10    0.15    0.20    0.25   0.05  0.075  0.10  0.125  0.15 

 0.05  0.075  0.10  0.125  0.15 

(a) (b) 

(c) (d) 

maritime 

continental desert dust 

Fig. 6. (a)Winter (DJF) mean seasonal aerosol optical thickness at 550 nm (AOTDJF , given over both land and ocean) and mean contribution
to AOTDJF of maritime(b), desert dust(c), and continental(d) aerosol over the basin (AOT∗

DJF,mar, AOT∗
DJF,dust and AOT∗

DJF,cont,
respectively, with AOTDJF =AOT∗

DJF,mar+AOT∗
DJF,dust+AOT∗

DJF,cont). Black regions in plot a) (missing data) correspond to bright
surfaces (e.g. sand, snow) or areas with persistent cloud cover during the season.
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Fig. 7. As in Fig. 6 but for the Spring season (MAM).
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Fig. 8. As in Fig. 6 but for the Summer season (JJA).
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Fig. 9. As in Fig. 6 but for the Fall season (SON).
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Table 1. Synopsis of the whole set of variables employed to describe the variability of the aerosol optical thickness.

 34 

Table 1. Synopsis of the whole set of variables employed to describe the variability of the 

aerosol optical thickness .   

 

Variable Definition Description 

SAOT  ∑
=

=
S

j
j

S
S

N

1
AOT

N
1AOT  Pixel (0.1°×0.1°) seasonal average AOT. NS is the pixel total 

number of AOT retrievals (AOTj) in the season S. 

 type,AOTS
 ∑

=

=
 type,N

1
 type,

 type,
 type, AOT

N
1AOT

S

j
j

S
S

 Pixel (0.1°×0.1°) seasonal average AOT associated to each 
aerosol type. NS, type is the pixel total number of AOTj 
classified as “type” (i.e, AOTtype,j) during the season S. 

*
 type,AOTS

 
 type, type,

*
 type, AOT AOT SSS f ⋅=  

Mean seasonal contribution of each aerosol type to the pixel 
AOTS. For each pixel, it is AOTS = AOT*

S,cont + AOT*
S,mar + 

AOT*
S,dust being fS, type = NS,type / NS (with  fS,cont + fS,mar + fS,dust 

= 1). 

Analysis by Sectors of the Mediterranean basin (e.g. Sect. 3.1)  

SEC ,AOTS
 ∑

=

=
SEC 

 

P

1P
 P,

SEC
SEC , AOT

P
1AOT

k

kSS
 Sector (SEC) seasonal (S) average AOT. Pk is the kth pixel in 

sector SEC; PSEC is the total number of pixels in SEC. 

 typeSEC, ,AOTS
 ∑

=

=
SEC  type,

 

P

1P
 P type,,

SEC
 typeSEC, , AOT

P
1AOT

k

kSS
 

Sector (SEC) seasonal (S) average AOT associated to each 
aerosol type. Pk is the kth pixel in sector SEC; Ptype, SEC is the 
total number of pixels in SEC in which the parameter 
AOTS,type is defined; PSEC is the total number of pixels in the 
sector SEC (independent from aerosol type).  

*
 typeSEC, ,AOTS

 ∑
=

=
SEC  type,

 

P

1P

*
 P type,,

SEC

*
 typeSEC, , AOT

P
1AOT

k

kSS
 

Mean seasonal (S) contribution of each aerosol type to the 
sector AOTS, SEC. Pk is the kth pixel in SEC; Ptype, SEC is the 
total number of pixels in SEC in which the parameter 
AOTS,type (and thus AOT*

S,type) is defined; PSEC is the number 
of pixels in SEC. For each sector it is AOTS,SEC = 
AOT*

S,SEC,cont + AOT*
S,SEC,mar + AOT*

S,SEC,dust  

SEC in  type,AOTS  ∑
=

=
SEC  type,

 

P

1P
 P type,,

SEC type,
SEC in  type, AOT

P
1AOT

k

kSS
 

Seasonal (S) average AOT associated to each aerosol type 
averaged regionally only over those pixels in sector SEC 
where the aerosol type is detected (Ptype, SEC). Being Ptype, SEC ≤ 
PSEC, it is AOTS, type in SEC ≠ AOTS, SEC, type..  

 

 

 

 

 

 

strongly depends on the season and latitude. During 2001,
minimum incidence of clouds (mean cloud fraction≤20%)
was registered in Summer in the Eastern part of the Mediter-
ranean basin (latitudes<40◦ N, longitudes>15◦ E) while
maximum incidence of clouds (mean cloud fraction≥70%)
was registered in Winter above 44◦ N. We therefore believe
that the seasonal averages presented provide reliable statis-
tics even in the worst cases of highest cloud occurrence (i.e.
about 30% of successful retrievals).

Comparison of the four a)-plots in Figs. 6 to 9 reveals
the strong seasonal cycle of the aerosol optical thickness
all over the Mediterranean, with the lowest AOT observed
in Winter and maximum AOT values registered in Spring-
Summer. These latter are possibly related to the increase of

both photochemical and convective activity registered dur-
ing the warmest months of the year. For example, in cen-
tral Italy, the higher AOT values observed in Spring-Summer
are associated to aerosol extending up to altitudes of 3–4 km
while in the Winter months lower AOT are registered with
aerosols confined below 2 km (Gobbi et al., 2004). The mod-
eling study of Duncan and Bey (2004) also highlights the
important role of convection as a pathway to the export of
European pollution to the middle troposphere in summer. It
is also worth mentioning that surface aerosol mass measure-
ments (PM2.5 and PM10) performed all over Europe (Van
Dingenen et al., 2004; Putaud et al., 2004) generally show a
different trend with maxima during the cold seasons, partic-
ularly at polluted sites. In fact, in the winter months a larger
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condensation of semi-volatile species is expected (Van Din-
genen et al., 2004) and, in addition, the low convective activ-
ity is likely to keep the aerosol particles in the lowest levels
where these are sampled. Conversely, in the warmer months,
both reduced RH at the ground and convection-driven mixing
of atmospheric particulate to the higher levels translate into
a lower amount of aerosol mass being measured by in situ
samplers at the ground. These results confirm that knowl-
edge of the vertical distribution of the particles is necessary
to correlate aerosol columnar quantities (as the AOT) to par-
ticulate measurements (as PM) at the ground (e.g. Chu et al.,
2003; Wang and Christopher, 2003).

Another general feature emerging from Figs. 6a–9a is the
impact of some major European cities and/or industrialized
areas. The Po Valley (i.e. the most industrialized region in
Italy) is the most evident case of such an effect. An increase
in AOT is also evident for example in the Hungarian region
and over main urban sites as Marseille in France, Rome and
Naples in Italy, and Thessaloniki in Greece. Overall, the
AOT pattern observed in plots a) of Figs. 6–9 can be well
related to anthropogenic sources as suggested by recent stud-
ies performed by Robles Gonzales et al. (2003) and Schaap
et al. (2004) by means of chemical-transport models. These
studies (in which sea salt and dust aerosol types are not con-
sidered) show the AOT field over Europe to be strongly re-
lated to the distribution of inorganic aerosol precursor emis-
sions (sulfates, nitrates). For example, the Po Valley and the
Eastern Europe region (e.g. Hungary, Bulgaria) are shown
to be characterized by higher concentrations of NO3 and/or
SO4 and SO2 with respect to Western Europe, where high
values of these constituents are only found in the northern
coast of Spain. In Figs. 6a–9a, the high AOT values over the
Nile-delta region are likely affected by water contamination.

The winter plots of Fig. 6 show the AOT in the Mediter-
ranean region to be mostly confined below 0.15–0.20, with
higher values over land only registered in Northern Italy,
Western France and in the Hungarian region. AOT values
higher that 0.15 over the Mediterranean Sea are mainly re-
lated to some Saharan dust transport events as revealed by
Fig. 6c. However, minimum incidence of long range dust
transport is registered in this season, in agreement with the
seasonal analysis by Gobbi et al. (2004) performed employ-
ing lidar data collected at Rome in the year 2001. Fig-
ure 6d reveals some advection of continental aerosol over the
Mediterranean with larger impact in the North and North-
Eastern regions. This pattern is compatible with the domi-
nance of Westerlies over the Mediterranean in Winter (e.g.
Stohl et al., 2002).

Opposite to the winter case, the Spring plots of Fig. 7 show
a mean Mediterranean AOT generally higher than 0.15 over
both land and ocean. In the Po Valley region AOT reaches
values higher than 0.45, almost double with respect to Win-
ter. Figures 7c and d reveal that both dust and continental
aerosols contribute to the high AOT values observed over the
Mediterranean and the Black Sea. In particular, a major im-

pact of Saharan dust is evident over the Eastern and the Cen-
tral Mediterranean, while advection of continental aerosol
mainly affects Western and Central Mediterranean as well
as the North Atlantic (Bay of Biscay) and the Black Sea. It is
worth mentioning that, by exploiting the polarization capa-
bilities of the POLDER instrument, Tanré et al. (2001) high-
lighted a maximum impact of pollution events over central
Europe in Spring. However, in that study July and August
data were not available. Comparison of Figs. 7a and c shows
the contribution of dust to the total AOT to reach 60% close
to the Libyan and Egyptian-Israeli coasts. A similar contri-
bution by continental aerosol is found to the North of Spain,
in the Black Sea and in the Northern Adriatic Sea (right in
the outflow of the Po Valley region).

As already pointed out, maximum aerosol optical thick-
ness values are reached in Summer (Fig. 8), with AOT>0.2
prevailing over both the European continent and the Mediter-
ranean basin. Actually, the summer AOT field of Fig. 8a
compares quite well with the one retrieved at 555 nm by Rob-
les Gonzales et al. (2003) employing August 1997 data col-
lected by the ATSR-2 radiometer on board the ESA ERS-2
platform. Overall, model calculations performed over Eu-
rope for the summer period (August) by Robles Gonzales et
al. (2003) suggest a maximum contribution of nitrates and
sulphates to the total AOT (at 555 nm) of 10% and 70%,
respectively. Figure 8a shows a particular AOT increase
with respect to Spring over Eastern Europe (AOT>0.3 over
Hungaria, Romania, Ukraine). This effect is possibly con-
nected to the frequent biomass burning events that occurred
in Eastern Europe in the Summer 2001 (e.g. Salisbury et al.,
2003; Sciare et al., 2003b). It is worth mentioning that, al-
though not specifically addressed in this study, biomass burn-
ing episodes are likely to be classified as continental aerosol
in our scheme. In fact, these are characterized by high AOT
associated to a large fraction of fine particles (e.g. Dubovik et
al., 2002). In Fig. 8a, high AOT values are observed in Crete
and in the Southeastern European coastal regions (mainly
Greece and Turkey). Some water contamination in land pix-
els and water color impact on the ocean pixels are likely re-
sponsible for this effect. It is however worth mentioning that
the observed MODIS AOT as high as 0.4 (±0.13) in Crete
and along the Turkish coasts are still compatible with the
AERONET data (http://aeronet.gsfc.nasa.gov). In fact, the
AERONET quality assured AOT values available for those
areas in this period of the year show a mean AOT=0.23±0.08
in the FORTH-Crete site (35.3◦ N, 25.7◦ E, Crete, Greece,
August 2003) and a mean AOT=0.44±0.24 in the IMS-
METU-Erdemli coastal site (36.6◦ N, 34.2◦ E, Turkey, Au-
gust 2000). Figure 8d shows the Summer impact of con-
tinental aerosol (maximum of the year) to extend all over
the basin, with particular strength over the Central and East-
ern Mediterranean (with the exception of the area South of
Cyprus). These results are in agreement with the recent anal-
ysis of the Angstrom exponent variability over the Mediter-
ranean obtained by Jamet et al. (2004) from neural network
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inversion of SeaWiFS data for the year 2000. Overall, the
AOT pattern in Fig. 8d suggests a prevalent northerly flow in
the lower layers, where transport of pollutants mainly occurs
(e.g. Stohl et al., 2002). In this respect, an extensive anal-
ysis of air mass trajectories in the Mediterranean during the
MINOS campaign (August 2001) presented by Lelieveld et
al. (2002), revealed a dominant northerly flow below 4 km,
confirming the results by Stohl et al. (2002) and Duncan and
Bey (2004) of a Summer southward flow of European pollu-
tion over the Mediterranean basin and Africa. Conversely, in
the middle and upper troposphere (i.e. in the region where the
Saharan dust transport mainly occurs), Lelieveld et al. (2002)
found westerly/southerly winds to prevail. In fact, similarly
to the Spring case (Fig. 7), the Summer continental aerosol
distribution in the Mediterranean basin appears to comple-
ment the Saharan dust one (Figs. 8c and d). In particular,
continental aerosol dominate the Central and Eastern basin
whereas a major impact of dust is observed in the Central-
Western Mediterranean. With respect to the Spring condi-
tions, a Summer westward shift of Saharan dust transport is
thus observed in 2001. This is in agreement with the gen-
eral pattern of dust transport over the Mediterranean emerg-
ing from multi annual analysis of satellite data (Moulin et
al., 1998; Israelevich et al., 2002). It is also worth noticing
that the minor impact of both continental and dust aerosol
over the South-eastern Mediterranean (south of Cyprus) re-
veals the large maritime contribution to the AOT in this re-
gion (Fig. 8b). A Summer increase in biogenic (marine phy-
toplankton) sulphate aerosols could account for such result.
In fact, an important impact of biogenic sulphur is found in
the Summer Eastern Mediterranean atmosphere, even though
the major source of sulphate in this region is still assigned to
long-range transport (Ganor et al., 2000; Kouvarakis et al.,
2002).

Figure 9 shows the substantial reduction of the Fall AOT
average with respect to the Summer one. However, AOT
values as high as 0.2 are still observed over a large part of
the European continent (e.g. Western France, Northern Italy,
Hungarian region) as well as over Southern Mediterranean.
In this latter region AOT values are affected by Saharan dust
whose contribution to the total AOT is still of the order of
50%, and even larger close to the African coasts (Fig. 9c).
While a minimum impact of Saharan dust is observed in win-
ter (Fig. 6c), the minimum impact of continental aerosol is
registered in Fall (Fig. 9d), with residual continental influ-
ences mainly visible in the Northern Adriatic Sea (outflow of
the Po Valley region) and in the Greek Halkidiki peninsula.
In this respect, it is worth mentioning a further factor playing
a major role in determining the observed aerosols seasonal
pattern: precipitation, i.e. the most efficient removal process
of atmospheric particulate. In fact, the observed seasonal pat-
tern of the Mediterranean AOT should also be interpreted in
connection to the seasonal and latitudinal pattern of precip-
itation in the Mediterranean (e.g. Mariotti et al., 2002). In
particular, even considering the mentioned increase of pho-

tochemical and convective activity in Spring-Summer, the
higher mean AOT registered in this period of the year is also
a consequence of a minimum aerosol scavenging by precip-
itation. Conversely, the higher precipitation rate registered
over the Mediterranean in Fall and Winter (particularly at
latitudes≥40◦ N) tends to reduce the mean residence time
of aerosols in the atmosphere, and, in turn, the mean AOT. In
the case of non-local aerosol (e.g. continental aerosol trans-
ported over the Mediterranean), this precipitation effect is
expected to be even more evident. In fact, when aerosols
travel time is comparable to the mean time interval between
two rain events, the advection-related aerosol load cannot be
completely re-established (e.g. Bergametti et al., 1989). In-
terestingly, during the year 2001 the highest seasonal rain
rates (Rr ) over the Mediterranean basin were registered in
Fall (Rr mean values higher than 2 mm/day) with maximum
values (Rr>3 mm/day) over the Adriatic Sea, the Balearic Is-
lands and the Cyprus region. In Winter the mean Rr over the
basin was 1.5–2.5 mm/day whereas the Spring and Summer
means were Rr<1 and Rr<0.5 mm/day, respectively (data
from NCEP/NCAR reanalysis).

3.1 Mediterranean AOT data summary

To provide a summary of the seasonal and regional variabil-
ity discussed so far, aerosol optical thicknesses averaged over
both season and Mediterranean sectors were computed and
are reported in Table 2. Regional averages have been per-
formed considering the Mediterranean basin as divided into
the ten sectors (SEC) shown in Fig. 10. These were selected
to define a Western, Central and Eastern Mediterranean basin
(longitudinal partitions at 8◦ and 21◦ W) and to facilitate the
evaluation of North-to-South AOT gradients (latitudinal par-
titions at 35◦, 38◦ and 41◦ N). A detailed definition of the
variables reported in Table 2 is given hereafter. Tables 2a,
b, c, and d refer to the Winter, Spring, Summer and Fall av-
erages, respectively. The seasonal averages AOTS,type and
AOT∗

S,type
(see Figs. 6–9b, c, d) defined in Table 1 and de-

rived for each ocean pixel, were averaged regionally. This is,
for the ten sectors of Fig. 10 the following quantities were
computed:

AOTS,SEC,type=
1

PSEC

Ptype,SEC∑
Pk=1

AOTS,type,Pk
(4)

AOTS,SEC,type
∗=

1

PSEC

Ptype,SEC∑
Pk=1

AOTS,type,Pk

∗ (5)

where the subscript Pk indicates thek-th pixel in sector SEC;
Ptype,SEC is the total number of pixels in SEC in which the
parameter AOTS,type (and AOT∗S,type) is defined; and PSEC is
the total number of pixels in the sector SEC (independent of
the aerosol type).

It is worth noticing that, since an aerosol type is not neces-
sarily detected in the whole sector during a season (i.e. being
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Fig. 10. The ten sectors of the Mediterranean basin employed in the analysis. The relative area of each sector (in percent) is 4.7, 8.1, 9.2,
11.3, 3.1, 7.8, 12.6, 10.2, 13.4, 19.6, respectively.

Ptype,SEC≤PSEC), the quantity AOTS,SEC,type does not coin-
cide with AOTS,type in SEC, i.e. the AOT averaged only over
the pixels classified as “type” in sector SEC

(it is : AOTS,SEC,type=
1

PSEC

Ptype,SEC∑
Pk=1

AOTS,type,Pk
≤

≤
1

Ptype,SEC

Ptype,SEC∑
Pk=1

AOTS,type,Pk
=AOTS,type in SEC).

For example: the quantity AOTDJF,5,dust in Table 2a
is the desert dust average AOT over the whole sector 5
in winter (0.18±0.07). However, since only a fraction of
sector 5 was covered by dust, AOTDJF,5,dust is smaller
than the mean AOT of dust events in that sector, i.e.
AOTDJF,dust in 5 (0.44±0.11). For completeness, the whole
set of AOTS,type in SEC values are also given in Table 2 (in
parentheses).

Data presented in Table 2 clearly show the following:

1. A seasonal pattern of the aerosol optical thickness in
the Mediterranean, with mean AOT values (AOTS,SEC)
spanning the range 0.12–0.14 in Winter, 0.17–0.28 in
Spring, 0.20–0.28 in Summer and 0.15–0.26 in Fall.

2. A seasonal cycle of dust distribution within the basin,
associated to a South-to-North gradient. In fact, a
Spring maximum dust impact is found in the Eastern-
Central Mediterranean (AOTMAM,SEC,dust>0.45, with
dust percentage AOT contribution>40 % in Sectors
10-8 and 9-7-4, respectively). In Summer and Fall

dust maxima shift to the Central-Western Mediterranean
(AOTJJA,SEC,dust and AOTSON,SEC,dust≥0.44 in Sec-
tors 9-7-4, and 6-3, with dust percentage contribu-
tions to AOT ≥28%). In Winter a residual dust ac-
tivity is registered in the Western part of the basin
(AOTDJF,SEC,dust≥0.32 in sectors 6-3-1) but in the
South-Eastern Mediterranean the beginning of a “new
cycle” is also detected (AOTDJF,SEC,dust=0.37 in Sec-
tor 10).

3. A transport of continental aerosol from the European
continent over the basin with maximum impact along
the coastal regions. In fact, the highest contribution of
continental particles to the total AOT is found in Sectors
2 and 5 in Winter (>30%), in Sectors 1, 2, 5 in Spring
(≥35%), in Sectors 1, 2, 4, 5, 8 in Summer (≥43%) and
again in Sectors 2 and 5 in Fall (≥19%).

A graphical representation of these patterns in terms of
aerosol mass is provided in the following Sect. 3.2.

In the case of desert dust, the results obtained for the year
2001 and reported in Table 2 can be compared to the 11-
year climatology (from 1984 to 1994) obtained by Moulin
et al. (1998). In that study, seasonal averages of the optical
thickness due to Saharan dust over the Western, Central and
Eastern Mediterranean were computed on the basis of daily
analysis of Meteosat images. To be compared to the Moulin
et al. (1998) data, the dust contribution to the total AOT in the
Western (SEC=1, 3, 6), Central (SEC=2, 4, 7, 9) and East-
ern (SEC=5, 8, 10) Mediterranean can be computed by aver-
aging the AOT∗S,SEC,dust

values in Table 2 over the relevant
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Table 2a. Winter AOTS,SEC,type and AOT∗S,SEC,type
averages (S=DJF) and relevant standard deviations (s.d.) computed for the

ten sectors of Fig. 10 and for the three aerosol types as indicated in Sect. 3.1. For completeness, the AOTS,type in SEC values
corresponding to the AOTS,SEC,type ones are also reported. Moreover, being the mean seasonal AOT in each sector given by
AOTS,SEC=AOT∗

S,SEC,cont
+AOT∗

S,SEC,mar
+AOT∗

S,SEC,dust
, the values AOT∗S,SEC,type

/AOTS,SEC(in percent) are also reported in the Table,

indicating the relative contribution of each aerosol type to the seasonal AOT in the sector.

 35 

Table 2a. Winter AOTS, SEC, type and AOT*
S, SEC, type averages (S = DJF) and relevant standard 

deviations (s. d.) computed for the ten sectors of Fig. 10 and for the three aerosol types as 

indicated in Appendix A. For completeness, the AOTS, type in SEC  values corresponding to the 

AOTS, SEC, type ones are also reported. Moreover, being the mean seasonal AOT in each sector 

given by AOTS, SEC = AOT*
S, SEC, cont + AOT*

S, SEC, mar + AOT*
S, SEC, dust, the values AOT*

S, SEC, 

type / AOTS, SEC (in percent) are also reported in the Table.  

 

AOTDJF, SEC, type ± s. d.  

(AOTDJF, type in SEC ± s. d.) 

AOT*
DJF, SEC, type ± s. d. 

(AOT*
DJF, SEC, type /AOTDJF, SEC) in % Sector 

dust continental maritime dust continental maritime 

AOTDJF, SEC 

± s. d. 

1 0.32 ± 0.09 

(0.41 ± 0.10) 

0.13 ± 0.05 

(0.13 ± 0.06) 

0.12 ± 0.02 

(0.12 ± 0.02) 

0.03 ± 0.01 

(22%) 

0.02 ± 0.01 

(14%) 

0.09 ± 0.02 

(64%) 

0.14 ± 0.02 

2 0.27 ± 0.14 

(0.45 ± 0.18) 

0.14 ± 0.06   

(0.15 ± 0.06) 

0.11 ± 0.02 

(0.11 ± 0.02) 

0.02 ± 0.02 

(15%) 

0.04 ± 0.02 

(31%) 

0.07 ± 0.02 

(54%) 

0.13 ± 0.04 

3 0.32 ± 0.21 

(0.50 ± 0.26) 

0.11 ± 0.08 

(0.11 ± 0.08) 

0.11 ± 0.02 

(0.11 ± 0.02) 

0.02 ± 0.02 

(17%) 

0.02 ± 0.01 

(17%) 

0.08 ± 0.02 

(66%) 

0.12 ± 0.03 

4 0.30 ± 0.15 

(0.47 ± 0.19) 

0.14 ± 0.06 

(0.15 ± 0.06) 

0.12 ± 0.02 

(0.12 ± 0.02) 

0.02 ± 0.02 

(14%) 

0.03 ± 0.01 

(22%) 

0.09 ± 0.02 

(64%) 

0.14 ± 0.02 

5 0.18 ± 0.07 

(0.44 ± 0.11) 

0.13 ± 0.05 

(0.14 ± 0.06) 

0.11 ± 0.04 

(0.12 ± 0.04) 

0.02 ± 0.03 

(16%) 

0.05 ± 0.03 

(42%) 

0.05 ± 0.03 

(42%) 

0.12 ± 0.05 

6 0.43 ± 0.25 

(0.58 ± 0.29) 

0.08 ± 0.05 

(0.08 ± 0.05) 

0.11 ± 0.02 

(0.11 ± 0.02) 

0.03 ± 0.03 

(25%) 

0.02 ± 0.01 

(17%) 

0.07 ± 0.02 

(58%) 

0.12 ± 0.04 

7 0.30 ± 0.12 

(0.44 ± 0.15) 

0.14 ± 0.08 

(0.14 ± 0.08) 

0.12 ± 0.02 

(0.12 ± 0.02) 

0.02 ± 0.02 

(14%) 

0.02 ± 0.02 

(14%) 

0.10 ± 0.02 

(72%) 

0.14 ± 0.02 

8 0.23 ± 0.18 

(0.53 ± 0.26) 

0.10 ± 0.04 

(0.11 ± 0.04) 

0.12 ± 0.02 

(0.12 ± 0.02) 

0.02 ± 0.04 

(17%) 

0.03 ± 0.02 

(25%) 

0.07 ± 0.03 

(58%) 

0.12 ± 0.05 

9 0.31 ± 0.10 

(0.42 ± 0.12) 

0.08 ± 0.07 

(0.10 ± 0.08) 

0.11 ± 0.01 

(0.11 ± 0.01) 

0.02 ± 0.01 

(15%) 

0.01 ± 0.01 

(8%) 

0.10 ± 0.01 

(77%) 

0.13 ± 0.02 

10 0.37 ± 0.28 

(0.59 ± 0.36) 

0.10 ± 0.04 

(0.10 ± 0.04) 

0.13 ± 0.02 

(0.13 ± 0.02) 

0.03 ± 0.03 

(22%) 

0.02 ± 0.02 

(14%) 

0.09 ± 0.02 

(64%) 

0.14 ± 0.04 

 

sectors, weighted by the area of each sector (see Fig. 10 cap-
tion). In this way, we find that 8 out of our 12 seasonal av-
erages (four seasons times the three regions) are within the
variability ranges obtained by Moulin et al. (1998), whereas
the variability ranges of 11 out of our 12 seasonal averages
overlap with the ones of Moulin et al. (1998). Our mean dust
optical thickness is however generally lower (about−30%),
with maximum and minimum relative differences registered
in Winter (−50%) and Fall (−7%), respectively.

The sector analysis described above was also used as
a control tool of the criteria adopted to built the aerosol

mask. To this purpose, the mean seasonal AOT values
characterizing each aerosol type in the different sectors
(i.e. the AOTS,type in SECvalues in Table 2) were associated
to the corresponding mean seasonal fine fraction values,
FFS,type in SEC. Relevant results are shown in Fig. 11, where
the three regions of the aerosol mask (see Fig. 1) have also
been indicated. This graph confirms that the three FF vs.
AOT regions selected are well suited to identify the three
aerosol types. This is because the distribution of points in
the three regions of Fig. 11 (maritime, continental and dust)
shows no tendency to overlap. Conversely, a concentration
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Table 2b. As in Table 2a but for the Spring season (S=MAM).
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Table 2b. As in Table 2a but for the spring season (S = MAM). 

 

AOTMAM, SEC, type ± s. d.  

(AOTMAM, type in SEC ± s. d.) 

AOT*
MAM, SEC, type ± s. d. 

(AOT*
MAM, SEC, type /AOTMAM, SEC) in % Sector 

dust continental maritime dust continental maritime 

AOTMAM, SEC 

± s. d. 

1 0.30 ± 0.12 

(0.40 ± 0.14) 

0.14 ± 0.04    

(0.14 ± 0.04) 

0.17 ± 0.03 

(0.17 ± 0.03) 

0.03 ± 0.02 

(18%) 

0.06 ± 0.03 

(35%) 

0.08 ± 0.03 

(47%) 

0.17 ± 0.03 

2 0.35 ± 0.28 

(0.55 ± 0.35) 

0.16 ± 0.05    

(0.16 ± 0.05) 

0.15 ± 0.03 

(0.16 ± 0.03) 

0.04 ± 0.04 

(22%) 

0.08 ± 0.04 

(44%) 

0.06 ± 0.03 

(34%) 

0.18 ± 0.05 

3 0.34 ± 0.15 

(0.46 ± 0.17) 

0.12 ± 0.03 

(0.12 ± 0.03) 

0.16 ± 0.03 

(0.16 ± 0.03) 

0.04 ± 0.03 

(24%) 

0.05 ± 0.02 

(29%) 

0.08 ± 0.03 

(47%) 

0.17 ± 0.03 

4 0.56 ± 0.28 

(0.65 ± 0.30) 

0.16 ± 0.05 

(0.16 ± 0.05) 

0.16 ± 0.03 

(0.17 ± 0.03) 

0.09 ± 0.07 

(41%) 

0.06 ± 0.03 

(27%) 

0.07 ± 0.02 

(32%) 

0.22 ± 0.07 

5 0.30 ± 0.11 

(0.51 ± 0.14) 

0.15 ± 0.11 

(0.16 ± 0.11) 

0.13 ± 0.04 

(0.17 ± 0.05) 

0.05 ± 0.04 

(29%) 

0.08 ± 0.10 

(47%) 

0.04 ± 0.02 

(24%) 

0.17 ± 0.10 

6 0.36 ± 0.12 

(0.46 ± 0.14) 

0.12 ± 0.04 

(0.13 ± 0.04) 

0.16 ± 0.02 

(0.16 ± 0.03) 

0.06 ± 0.04 

(33%) 

0.04 ± 0.02 

(22%) 

0.08 ± 0.03 

(45%) 

0.18 ± 0.04 

7 0.54 ± 0.18 

(0.57 ± 0.18) 

0.15 ± 0.05 

(0.15 ± 0.05) 

0.16 ± 0.02 

(0.17 ± 0.02) 

0.12 ± 0.06 

(48%) 

0.05 ± 0.02 

(20%) 

0.08 ± 0.02 

(32%) 

0.25 ± 0.06 

8 0.47 ± 0.20 

(0.55 ± 0.22) 

0.12 ± 0.05 

(0.14 ± 0.06) 

0.15 ± 0.03 

(0.17 ± 0.03) 

0.12 ± 0.11 

(52%) 

0.04 ± 0.03 

(17%) 

0.07 ± 0.03 

(31%) 

0.23 ± 0.11 

9 0.63 ± 0.28 

(0.65 ± 0.28) 

0.14 ± 0.05 

(0.15 ± 0.05) 

0.16 ± 0.02 

(0.16 ± 0.02) 

0.17 ± 0.10 

(61%) 

0.03 ± 0.02 

(11%) 

0.08 ± 0.02 

(28%) 

0.28 ± 0.09 

10 0.54 ± 0.31 

(0.61 ± 0.33) 

0.10 ± 0.06 

(0.13 ± 0.07) 

0.16 ± 0.03 

(0.17 ± 0.03) 

0.14 ± 0.13 

(54%) 

0.02 ± 0.02 

(8%) 

0.10 ± 0.03 

(38%) 

0.26 ± 0.12 

 

of points along the regions limits would have been found for
a wrong choice of the three regions thresholds. In partic-
ular, a clear-cut distinction between continental and desert
dust aerosol emerges, not only in terms of fine fraction (im-
posed) but also in terms of AOT. This means that, even if
high AOT can be associated to some episodes of continental
aerosol transport, these conditions are I) not frequent (mean
continental AOT<0.3 and mean desert dust AOT>0.4 in
Fig. 11 and Table 2), and II) well discernible from dust events
by the aerosol mask (definite distinction between continental
and dust points in the FF vs. AOT space of Fig. 11).

3.2 Estimation of the aerosol mass loading

Starting from AOT values, estimates of the column aerosol
loading, M (g/m2), can be derived employing an appropri-
ate conversion factor, generally referred to as the mass-to-
extinction efficiency,α=AOT/M (m2/g). Since both AOT
and M depend on particles physical and optical properties,
substantially differentα are associated to different aerosol
types. An updated compilation ofα values can be found in
the last IPCC report (Table 5.1 in Penner et al., 2001) where
these are classified on the basis of geographical region and/or
aerosol type. For example, minimum and maximum values
of α=1.8±0.5 m2/g andα=3.8±1.0 m2/g are there reported
for maritime aerosols, corresponding to “Pacific marine –
accumulation and coarse mode”, and “Atlantic marine”,
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Table 2c.As in Table 2a but for the Summer season (S=JJA).
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Table 2c. As in Table 2a but for the summer season (S = JJA). 

 

AOTJJA, SEC, type ± s. d.  

(AOTJJA, type in SEC ± s. d.) 

AOT*
JJA, SEC, type ± s. d. 

(AOT*
JJA, SEC, type /AOTJJA, SEC) in % Sector 

dust continental maritime dust continental maritime 

AOTJJA, SEC  

± s. d. 

1 0.40 ± 0.14 

(0.52 ± 0.16) 

0.22 ± 0.06    

(0.22 ± 0.06)   

0.15 ± 0.03 

(0.15 ± 0.03) 

0.05 ± 0.04 

(24%) 

0.09 ± 0.04 

(43%) 

0.07 ± 0.02 

(33%) 

0.21 ± 0.04 

2 0.30 ± 0.23 

(0.59 ± 0.33) 

0.22 ± 0.06    

(0.23 ± 0.06)   

0.12 ± 0.04 

(0.14 ± 0.04) 

0.03 ± 0.04 

(15%) 

0.13 ± 0.06 

(65%) 

0.04 ± 0.02 

(20%) 

0.20 ± 0.05 

3 0.44 ± 0.12 

(0.49 ± 0.13) 

0.20 ± 0.05 

(0.20 ± 0.05) 

0.16 ± 0.03 

(0.16 ± 0.03) 

0.10 ± 0.06 

(42%) 

0.07 ± 0.04 

(29%) 

0.07 ± 0.02 

(29%) 

0.24 ± 0.05 

4 0.44 ± 0.16 

(0.55 ± 0.18) 

0.20 ± 0.06 

(0.21 ± 0.06) 

0.13 ± 0.03 

(0.14 ± 0.03) 

0.06 ± 0.04 

(28%) 

0.10 ± 0.05 

(48%) 

0.05 ± 0.02 

(24%) 

0.21 ± 0.05 

5 0.06 ± 0.03 

(0.39 ± 0.07) 

0.25 ± 0.06 

(0.28 ± 0.06) 

0.13 ± 0.04 

(0.16 ± 0.04) 

0.01 ± 0.01 

(5%) 

0.15 ± 0.07 

(75%) 

0.04 ± 0.02 

(20%) 

0.20 ± 0.06 

6 0.54 ± 0.15 

(0.59 ± 0.16) 

0.17 ± 0.08 

(0.20 ± 0.09) 

0.15 ± 0.04 

(0.15 ± 0.04) 

0.18 ± 0.09 

(64%) 

0.03 ± 0.02 

(11%) 

0.07 ± 0.03 

(25%) 

0.28 ± 0.08 

7 0.48 ± 0.12 

(0.53 ± 0.12) 

0.21 ± 0.05 

(0.21 ± 0.05) 

0.16 ± 0.03 

(0.16 ± 0.03) 

0.10 ± 0.06 

(42%) 

0.07 ± 0.04 

(29%) 

0.07 ± 0.02 

(29%) 

0.24 ± 0.04 

8 0.20 ± 0.07 

(0.41 ± 0.10) 

0.22 ± 0.07 

(0.28 ± 0.08) 

0.15 ± 0.04 

(0.17 ± 0.04) 

0.03 ± 0.03 

(15%) 

0.09 ± 0.06 

(45%) 

0.08 ± 0.04 

(40%) 

0.20 ± 0.05 

9 0.47 ± 0.12 

(0.49 ± 0.13) 

0.19 ± 0.04 

(0.20 ± 0.05) 

0.17 ± 0.02 

(0.17 ± 0.02) 

0.10 ± 0.06 

(43%) 

0.05 ± 0.03 

(22%) 

0.08 ± 0.03 

(35%) 

0.23 ± 0.05 

10 0.27 ± 0.13 

(0.41 ± 0.16) 

0.13 ± 0.07 

(0.20 ± 0.08) 

0.17 ± 0.03 

(0.18 ± 0.03) 

0.05 ± 0.05 

(25%) 

0.03 ± 0.03 

(15%) 

0.12 ± 0.04 

(60%) 

0.20 ± 0.04 

 

respectively. For continental aerosols, minimum and max-
imum values ofα=1.00±0.08 m2/g andα=3.5±1.2 m2/g are
given, corresponding respectively to “background continen-
tal – accumulation and coarse mode” and “polluted conti-
nental”. Theα parameter being very sensitive to the particle
size distribution, a large variability (more than an order of
magnitude) of mass-to-extinction efficiencies of desert dust
can be found in literature (e.g. Moulin et al., 1997; Cachorro
and Tanŕe, 1997). This large variability is explained con-
sidering that it includes values from different dust models
and measurement techniques, and, in the latter case, different
distance from the sources, different aerosol sampling levels,
different dust load conditions in the atmosphere, etc. Over
the Mediterranean, Dulac et al. (1992a, 1992b) derivedα

in the range 0.6–0.9 m2/g from desert aerosol samples col-

lected at the surface level in Corsica (France). To our knowl-
edge no specific value is reported for continental and mar-
itime aerosol types in this region. We then performed an
original investigation to evaluate theα values typical of the
three Mediterranean aerosol types addressed in this study. To
this purpose, we employed 1) a large statistics of lidar mea-
surements to determine typical aerosol extinction coefficients
and 2) aerosol models to link such aerosol extinction values
to the relevant mass. These models were specifically devel-
oped to invert lidar measurements in maritime, continental
and desert-dust conditions (Barnaba and Gobbi, 2001; Barn-
aba and Gobbi, 2004). Both lidar observations and numeri-
cal computations refer to the wavelength of 532 nm, i.e. very
close to the 550 nm MODIS one. Lidar observations per-
formed at Mediterranean sites under appropriate aerosol load
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Table 2d. As in Table 2a but for the Fall season (S=SON).
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Table 2d. As in Table 2a but for the fall season (S = SON). 

 

AOTSON, SEC, type ± s. d.  

(AOTSON, type in SEC ± s. d.) 

AOT*
SON, SEC, type ± s. d. 

(AOT*
SON, SEC, type /AOTSON, SEC) in % Sector 

dust continental maritime dust continental maritime 

AOTSON, SEC 

± s. d. 

1 0.38 ± 0.06 

(0.41 ± 0.07) 

0.16 ± 0.08    

(0.24 ± 0.09)   

0.13 ± 0.02 

(0.13 ± 0.02) 

0.04 ± 0.02 

(26%) 

0.01 ± 0.01 

(7%) 

0.10 ± 0.02 

(67%) 

0.15 ± 0.02 

2 0.39 ± 0.12 

(0.46 ± 0.13) 

0.21 ± 0.10    

(0.25 ± 0.11)   

0.12 ± 0.02 

(0.12 ± 0.02) 

0.04 ± 0.03 

(25%) 

0.03 ± 0.02 

(19%) 

0.09 ± 0.02 

(56%) 

0.16 ± 0.04 

3 0.43 ± 0.10 

(0.45 ± 0.10) 

0.13 ± 0.07 

(0.22 ± 0.10) 

0.14 ± 0.02 

(0.14 ± 0.02) 

0.07 ± 0.04 

(37%) 

0.01 ± 0.01 

(5%) 

0.11 ± 0.02 

(58%) 

0.19 ± 0.03 

4 0.48 ± 0.24 

(0.51 ± 0.24) 

0.17 ± 0.07 

(0.23 ± 0.08) 

0.13 ± 0.02 

(0.13 ± 0.02) 

0.06 ± 0.04 

(33%) 

0.02 ± 0.01 

(11%) 

0.10 ± 0.02 

(56%) 

0.18 ± 0.03 

5 0.29 ± 0.05 

(0.40 ± 0.06) 

0.27 ± 0.10 

(0.30 ± 0.11) 

0.14 ± 0.02 

(0.14 ± 0.02) 

0.03 ± 0.03 

(18%) 

0.05 ± 0.05 

(29%) 

0.09 ± 0.03 

(53%) 

0.17 ± 0.05 

6 0.46 ± 0.10 

(0.48 ± 0.10) 

0.16 ± 0.11 

(0.34 ± 0.16) 

0.15 ± 0.02 

(0.15 ± 0.02) 

0.12 ± 0.06 

(52%) 

0.01 ± 0.02 

(4%) 

0.10 ± 0.02 

(44%) 

0.23 ± 0.05 

7 0.46 ± 0.07 

(0.47 ± 0.07) 

0.18 ± 0.07 

(0.23 ± 0.09) 

0.15 ± 0.02 

(0.15 ± 0.02) 

0.10 ± 0.05 

(45.5%) 

0.02 ± 0.01 

(9%) 

0.10 ± 0.02 

(45.5%) 

0.22 ± 0.04 

8 0.31 ± 0.06 

(0.40 ± 0.07) 

0.19 ± 0.08 

(0.25 ± 0.09) 

0.15 ± 0.03 

(0.15 ± 0.03) 

0.04 ± 0.03 

(23%) 

0.02 ± 0.02 

(12%) 

0.11 ± 0.03 

(65%) 

0.17 ± 0.04 

9 0.46 ± 0.08 

(0.47 ± 0.08) 

0.19 ± 0.08 

(0.22 ± 0.09) 

0.17 ± 0.02 

(0.17 ± 0.02) 

0.13 ± 0.06 

(50%) 

0.02 ± 0.01 

(8%) 

0.11 ± 0.02 

(42%) 

0.26 ± 0.05 

10 0.38 ± 0.08 

(0.41 ± 0.08) 

0.16 ± 0.08 

(0.21 ± 0.09) 

0.15 ± 0.02 

(0.15 ± 0.02) 

0.05 ± 0.03 

(28%) 

0.01 ± 0.01 

(5%) 

0.12 ± 0.02 

(67%) 

0.18 ± 0.03 

 

 

 

 

conditions have been considered. In particular, lidar mea-
surements for the year 2001 collected in a semi-urban site at
the outskirts of Rome (41.8◦ N, 12.6◦ E), Italy (Gobbi et al.,
2004) were used to derive a suitableα value of continental
aerosols (αcont). Considering the mean distance between the
Rome site and the Saharan region (about 1000–1500 km), li-
dar measurements recorded in Rome during the seven ma-
jor dust events registered in 2001 were used as representa-
tive of transported desert dust conditions to derive a typical
Mediterraneanαdust. Finally, lidar observations performed
in Crete (35.5◦ N, 23.7◦ E), Greece, in May 1999 (Gobbi et
al., 2000) were employed as representative of Mediterranean
maritime conditions to deriveαmar. A detailed description
of the procedure employed to derive the three investigated
mass-to-extinction efficiencies is given in Appendix A. The

resulting coefficients are:αcont=2.80 m2/g, αdust=1.36 m2/g
andαmar=1.85 m2/g for continental, desert dust and maritime
aerosol, respectively.

Both αcont and αmar fall within the variability range of
IPCC reported above. Ourαdust value is somewhat higher
than the one derived by Dulac et al. (1992a) in the Northwest-
ern Mediterranean (α=1/(1.13 g/m2)=0.88 m2/g) from cas-
cade impactor desert dust samples, i.e. for dust aerosol sam-
pled at the surface level (note that, for a given AOT, the
higherα the lower the dust mass). Some discussion on the
αdust value obtained is given ahead in this Section.

Based on the derived mass-to-extinction efficiencies, the
mean seasonal (S) maritime, continental and desert dust
mass loads, evaluated for each of the ten sectors (SEC) of
Fig. 10 (i.e.M∗

S,SEC,type
=AOTS,SEC,type

∗/αtype, expressed in
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 Fig. 11. Mean seasonal FF vs. AOT values characterizing each

aerosol type in the ten Mediterranean sectors of Fig. 10 (i.e.
FFS,type in SEC vs. AOTS,type in SEC data). Blue, green and red
points refer to maritime, continental and desert dust aerosol, respec-
tively. Different symbols are used to indicate the different seasons
(i.e. crosses, bullets, diamonds and squares refer toDJF, MAM, JJA
andSON, respectively). The aerosol mask thresholds of Fig. 1 are
also indicated in the graph.

Table 3. Seasonal average values of the estimated daily atmo-
spheric aerosol mass load (ktons/day) over the Mediterranean basin,
for each aerosol type. The total value (ktons, last row) indicates
the total suspended aerosol mass in the year 2001 (derived as
Total=Mean×4×90, being 4 the number of seasons per year and
about 90 the number of days per season).

Season
Aerosol mass

Desert dust Continental Maritime

DJF 40 19 106
MAM 180 37 102
JJA 131 60 99
SON 126 15 136

Mean±s.d. 119±58 33± 21 111±17
Total (year) 4.3E+04 1.2E+04 4.0E+04

g/m2) are shown in Fig. 12. Here, sectors corresponding to
Western (SEC=1, 3, 6), Central (SEC=2, 4, 7, 9) and East-
ern (SEC=5, 8, 10) Mediterranean basin have been reported
in separated plots (first, second and third column of Fig. 12,
respectively) in order to better highlight the regional (lon-
gitudinal) differences. Moreover, this representation allows
easy evaluation the meridional gradient of both the continen-
tal and desert dust aerosols.

Considering the area of each sector, mean seasonal aerosol
mass loads (i.e.

∑
SEC

M∗

S,SEC,type
×SECArea) were computed

and are summarized in Table 3. For each aerosol type, sea-
sonal mass values in Table 3 can be considered as the typi-
cal load characterizing each day during the season. Table 3
also shows that the total suspended mass of desert dust over
the Mediterranean basin in the year 2001 (4.3×104 ktons) is
comparable to that of maritime aerosol, although (as already
discussed) the former exhibits a seasonal cycle. The almost
constant value of the maritime aerosol mass over the sea-
sons (mean value 111 ktons/day associated to a standard de-
viation, s.d., of 17 Mtons, i.e. 15%) can be considered as a
further confirmation of the consistency of the aerosol mask
scheme presented.

With respect to the total dust load of 4.3×104 ktons, this
should be considered as a lower limit of the actual value
due to the two points described hereafter. 1) To give an
estimation of the total dust loaded in the atmosphere dur-
ing the year, every dust event observed should be considered
at its maximum (in terms of both AOT and extent). How-
ever, by definition, the seasonal means performed in this
study do not capture the dust plumes at their maximum but
rather weigh their amplitude all over the dust event. 2) The
desert dust mass-to-extinction factor,αdust=1.36 m2/g, is em-
ployed here as a mean Mediterranean value. It can be consid-
ered as a typical value of long-range transported (≥1000 km)
dust. For comparison,αdust=0.96 m2/g andαdust=0.93 m2/g
were obtained (following the same approach as described in
Appendix A) employing lidar observations of Saharan dust
plumes observed closer to the source region, i.e. over the
Canary Islands (August 2002) and Sicily (July 2003), re-
spectively. On the whole, this variability is expected to pro-
duce a maximum dust mass underestimation, dM/M, of the
order of 50% close to the dust sources (dM/M=[(1/0.93–
1/1.36)AOT]/(1/1.36)AOT)∼=0.47).

Finally, some comparisons of our results with similar esti-
mates obtained from both modeling studies and observations
are given hereafter.

In the case of modeling, the aerosol mass load is obtained
by combining source emissions and meteorological data with
atmospheric processing (chemistry, transport, etc.). A com-
prehensive study focusing on aerosol modules of different
models was performed by Kinne et al. (2003). In that study,
models including at least five aerosol components (sulphate,
organic and black carbon, sea salt and dust) were considered
and yearly average values of aerosol mass were computed
for different regions of the world, including Europe (more
precisely North-Eastern Europe). Overall, the authors high-
lighted significant differences between the different models
in terms of aerosol simulated properties in most of the re-
gions addressed. In particular, simulated by seven mod-
els, the aerosol mass yearly average, Yaerm, over Europe
was found to range between 0.05 and 0.15 g/m2, with four
models providing Yaerm≤0.06 g/m2 and three models giving
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Fig. 12. Mean seasonal (S=DJF, MAM, JJA andSON) maritime, continental and desert dust mass loads (g/m2; blue, green and orange
histograms, respectively) in the ten sectors (SEC) of Fig. 10, shown separately for Western (SEC=1, 3, 6), Central (SEC=2, 4, 7, 9) and
Eastern (SEC=5, 8, 10) Mediterranean (left, central and right column, respectively).

Yaerm≥0.09 g/m2. For comparison, the yearly average of the
continental aerosol mass over the whole Mediterranean basin
derived from our analysis is 0.014 g/m2, which becomes
0.023 g/m2 when the yearly average is restricted to sectors
1, 2, and 5, i.e. closer to the region investigated by Kinne et
al. (2003). It is therefore evident that our value is much lower
than the modeled one. However, it should be noted that, as

performed over the Mediterranean basin, our estimates are
more representative of the continental aerosol export from
Europe rather than of the continental aerosol burden over Eu-
rope. Moreover, some overestimation of the emissions over
Europe (and consequently of the aerosol mass) was also sus-
pected by Kinne et al. (2003) in their study.
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From Kinne et al. (2003) it is also possible to de-
rive an indirect estimate of the yearly average of Saha-
ran dust mass reaching the Mediterranean (Ydustm,Med).
In fact, in that study model-derived values of both dust
mass emissions from North Africa (Ydustm,emiss) and
dust mass outflow towards the Atlantic (Ydustm,outf l) are
given. As an approximation, we can therefore derive
Ydustm,Med=Ydustm,emiss-Ydustm,outf l . In this way, we ob-
tain Ydustm,Med in the range 0.02–0.55 g/m2 (with three
models giving Ydustm,Med≤0.1 g/m2, two models pro-
viding 0.1<Ydustm,Med<0.2 g/m2 and two models with
Ydustm,Med>0.3 g/m2).

For comparison, the yearly average of Saharan dust
mass over the Mediterranean derived from our analysis is
0.05 g/m2.

Recently, the desert dust load over the Mediterranean was
also estimated by Sciarra et al. (2004) in the framework of the
EU-ADIOS (Atmospheric Deposition and Impact of pollu-
tants, key elements and nutrients on the Open Mediterranean
Sea) project. In that case, the true color images from the
SeaWiFS sensor were visually inspected to identify presence
of desert dust, and SeaWiFS AOT values (at 670 nm) were
converted to dust mass withα=0.77 m2/g. Then, monthly
averages of dust load were derived for the Western, Cen-
tral and Eastern Mediterranean (note that the definition of
such regions is slightly different from ours). Taking into ac-
count the relative weight of the three regions in the whole
basin (R. Sciarra, personal communication), the yearly av-
erage dust mass over the whole Mediterranean can be com-
puted. For the year 2001 this is 0.036 g/m2, i.e. within 30%
of our value (0.05 g/m2). The corresponding seasonal values
are: 0.024 g/m2 in DJF, 0.065 g/m2 in MAM, 0.030 g/m2 in
JJA and 0.026 g/m2 in SON. In that order, our analysis pro-
vides the following results: 0.017 g/m2 in DJF, 0.076 g/m2

in MAM, 0.055 g/m2 in JJAand 0.053 g/m2 in SON.

4 Conclusions

One year (2001) of aerosol optical thickness (AOT, at
550 nm) data from the MODIS instrument (NASA-Terra)
were analyzed in order to evaluate the aerosol seasonal and
geographical variability over the Mediterranean region. This
study highlighted an evident AOT seasonal cycle over the
whole Mediterranean region, with minimum and maximum
values in Winter (AOT mainly below 0.15) and Summer
(AOT mainly above 0.2), respectively. Over land, this study
shows that, even when seasonal averages are addressed, the
impact of big cities and/or industrialized areas is well de-
tectable in terms of higher AOT levels. In Europe, the Po
Valley (i.e. the most industrialized Italian area) is shown to
be particularly affected by high AOT values with respect to
the surrounding regions. This is likely to be due to both the
high level of aerosol gas precursor emissions and the partic-
ular orography of the region (an extended valley bounded to

the North, West and South by mountains) that facilitates the
pollutants entrapment.

Over ocean, an aerosol mask was implemented to sepa-
rate the contribution to the total AOT of the three aerosol
types prevailing over the Mediterranean basin, i.e. maritime
aerosols, continental aerosols (mainly of anthropogenic ori-
gin), and Saharan dust. When applied to specific case studies,
the aerosol mask showed good correspondence with the ac-
tual aerosol field evaluated by means of both true-color satel-
lite images and wind fields. Examination of case studies also
highlighted advection of continental and desert dust aerosol
to occur at different levels, i.e. mainly within and above the
planetary boundary layer, respectively.

Application of the aerosol mask to the whole 2001 dataset
allowed to identify some clear features of the atmospheric
particulate in the Mediterranean. The export of both con-
tinental and dust particles over the basin was found to be
important. As expected, continental aerosol were found to
impact mainly the coastal regions throughout the year. How-
ever, in the warmest seasons (Spring and Summer) these par-
ticles were found to impact the whole basin, with a relative
contribution to the total AOT up to more than 60% in the
Italian and Greek-Turkish coastal regions. A North-to-South
gradient of continental aerosol optical thickness is evident in
this case. An opposite South-to-North AOT gradient is asso-
ciated to Saharan dust export, this latter showing a marked
seasonal cycle. In fact, while in Spring maximum dust im-
pact is found in Eastern-Central Mediterranean (dust contri-
bution to AOT>40%), in Summer-Fall a shift to the Central-
Western Mediterranean is observed. In Winter 2001 a resid-
ual dust activity is registered in the Western part of the basin
while in the South-Eastern Mediterranean the beginning of a
“new cycle” is detected.

Atmospheric aerosol mass load estimates were performed
applying appropriate mass-to-extinction conversion factors
(α) to the seasonal AOT averages of maritime, continental
and desert dust particles. Theα values employed for the three
different aerosol types addressed in this study were specifi-
cally derived on the basis of lidar observations and modeling
studies. Overall, a total seasonal mean value of 119 ktons of
desert dust per day was found to characterize the Mediter-
ranean atmosphere, translating into a total of 4.3×104 ktons
of dust in the year 2001. A similar total mass load was found
to be associated to maritime aerosol (4.0×104 ktons). How-
ever, as expected, minimum seasonal variability (15%) of
aerosol mass was found in the maritime case. This result sup-
ports the suitability of the aerosol mask adopted to separate
the contribution of three aerosol types. Total suspended mass
of continental aerosol over the basin in 2001 is estimated to
be 1.2 Mtons.

On the whole, this study provides a quantitative overview
of the aerosol seasonal variability over the Mediterranean re-
gion, well representing the impact of the different aerosol
types over the Mediterranean basin. The AOT data presented
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Fig. 13. Modeled behavior of the mass-to-extinction efficiency,
α (m2/g), versus the aerosol extinction coefficient,σext (km−1),
computed at the lidar wavelength of 532 nm for the three different
aerosol types: maritime (blue squares), continental (green bullets)
and desert dust (orange diamonds). Note that theα parameter is
given for unit density (i.e.α=α∗=σext/V·ρ, with ρ=1 g/cm3) for
each aerosol type. Theσext values reported in the plot were ob-
tained binning 20 000 simulatedσext with a 0.01 km−1 step. The
corresponding meanα∗ value associated to each bin is reported with
its variability (±1 standard deviation, error bars).

over both land and ocean are thought to be important to pro-
vide a base of comparison for chemistry-transport models.

Appendix A: Deriving the mass-to-extinction efficiency
values

Mass-to-extinction efficiency values (α=AOT/M) typical of
the three Mediterranean aerosol types addressed in this study
were obtained by combining numerical computations based
on aerosol models and lidar observations.

As mentioned in Sect. 3.1, AOT and M depending on par-
ticles physical and optical properties,α values strongly de-
pend on the specific characteristic of the aerosol type under
investigation. In particular, it is:

AOT=∫
z
σext(z)dz (A1)

M=(4/3)πρ · ∫
r
r3n(r)dr=ρ · V (A2)

where z is the altitude,σext is the aerosol extinction coeffi-
cient,ρ is the aerosol particle density and n(r) is the aerosol
number size distribution. In Eq. (A2) an assumption of par-
ticle sphericity is made.

To derive typicalα values, we employed a numerical tech-
nique specifically developed to compute mean aerosol op-
tical and physical properties. In particular, mean proper-
ties of maritime, desert-dust and continental aerosol were
addressed as thoroughly described in Barnaba and Gobbi
(2001) and Barnaba and Gobbi (2004). In that proce-
dure, 20000 simulated values of both aerosol extinction,σext
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Fig. 14. Frequency of occurrence of the aerosol extinction coef-
ficient values (σext) as measured by lidar (at 532 nm) under(a)
continental,(b) desert dust, and(c) maritime aerosol conditions at
Mediterranean sites. The measuredσext values were binned with
a 0.01 km−1-step. The total number of observations considered is
17 436, 1586, and 1332, for continental, desert dust and maritime
aerosol, respectively. Note that, due to the typically different ver-
tical displacement of the three aerosol types,σext data correspond-
ing to different altitude ranges of the tropospheric lidar profile were
considered, i.e. 0<z<4 km for continental aerosol, 2 km<z<6 km
for desert dust aerosol and 0 km<z<2 km for maritime aerosol.

(km−1) (at 532 nm), and volume, V (cm3/cm3), were com-
puted for size distributions and refractive indices typical of
each aerosol type. Each computation was performed ran-
domly choosing the aerosol microphysical parameters (size
distribution, refractive index) within appropriate ranges fixed
according to data available in literature. In the present study,
those V andσext computations were employed to inves-
tigate the dependence of theα parameter onσext for the
three different aerosol types. To start, we will first refer
to the mass-to-extinction efficiency for unit density (i.e.α∗

(m2/g)=σext/V·ρ, with ρ=1 g/cm3). The outcome of this
analysis is given in Fig. 13, whereα∗ is plotted with respect
to the relevantσext (km−1), for each aerosol type. Note that
the 0.01 km−1-stepσext values reported in Fig. 13 were ob-
tained binning the original 20 000σext data. The correspond-
ing meanα∗ value associated to each bin is reported with its
variability (±1 standard deviation) in Fig. 13. As can be no-
ticed, due to the different microphysical aerosol properties, a
substantially differentα∗ versusσext behavior is obtained for
the three aerosol types.
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From these general curves, it was then necessary to derive,
for each aerosol type, a reliable, meanα∗ value to be applied
as a mass-to-extinction efficiency to the satellite AOT re-
trievals. This was done by weighting theα∗ values in Fig. 13
for the actual, i.e. observed, frequency of occurrence of the
σext values for the three aerosol types. To this purpose, lidar
σext tropospheric profiles measured at Mediterranean sites
under relevant aerosol load conditions were considered. In
particular, lidar measurements collected at the outskirts of
Rome, Italy (41.8◦ N, 12.6◦ E) during 2001 (Gobbi et al.,
2004) were used as representative of continental conditions;
lidar measurements recorded at the same site during seven
major dust events registered in 2001 were used as representa-
tive of transported desert dust conditions; lidar observations
performed in Crete (35.5◦ N, 23.7◦ E), Greece in May 1999
(Gobbi et al., 2000) were employed as representative of mar-
itime conditions.

For each case, lidar data of aerosol extinction were binned
with 0.01 km−1-step to evaluate the frequency of occurrence
of the differentσext values (only valuesσext>0.001 km−1

were considered). Due to the typically different vertical dis-
placement of the three aerosol types (e.g. Gobbi et al., 2004),
σext data corresponding to different altitude ranges of the tro-
pospheric lidar profile were considered, i.e. 0<z<4 km for
continental aerosol, 2 km<z<6 km for desert dust aerosol
and 0 km<z<2 km for maritime aerosol. Overall, a total of
17 436, 1586, and 1332σext observations were employed
for continental, desert dust and maritime aerosol, respec-
tively. The resultingσext frequency distributions for the three
aerosol types are shown in the histograms of Fig. 14. As
can be observed, due to the particles larger size, higherσext
values are generally registered in desert dust (Fig. 14b) and
maritime (Fig. 14c) conditions with respect to the continen-
tal case (Fig. 14a). Note however the larger width of the dust
σext frequency spectra with respect to the maritime case.

Combining results of Fig. 13 with data of Fig. 14, meanα∗

values for the three aerosol types were derived asα∗=[6bin

(α∗

bin·Observationsbin)/6binObservationsbin]. These are
α∗

cont=5.6 m2/g, α∗

dust=3.4 m2/g andα∗
mar=3.7 m2/g for conti-

nental, desert dust and maritime aerosol respectively. From
theseα∗ values (as mentioned referred toρ=1 g/cm3), the
three mass-to-extinction efficiencies were finally obtained as
αcont=2.80 m2/g, αdust=1.36 m2/g andαmar=1.85 m2/g con-
sidering a particle densityρ=2.0 g/cm3 for both continental
and maritime aerosols andρ=2.5 g/cm3 for desert dust).

Appendix B: Acronyms

ADEOS – Advanced Earth Observing Satellite
AERONET – Aerosol Robotic Network
ATSR-2 – Along Track Scanning Radiometer 2
CIRES – Cooperative Institute for Research

in Environmental Sciences
EOS – Earth Observing System
ERS2 – European Remote Sensing Satellite 2
ESA – European Space Agency
FORTH – Foundation for Research and

Technology – Hellas
IMS-METU – Institute of Marine Sciences,

Middle East Technical University
MISR – Multiangle Imaging Spectro Radiometer
MODIS – Moderate-resolution Imaging

Spectroradiometer
NASA – National Aeronautics and Space

Administration
NCEP – National Centers for Environmental

Prediction
NCAR – National Center for Atmospheric Research
NOAA – National Oceanic and Atmospheric

Administration
POLDER – Polarization and Directionality

of the Earth Reflectance
SeaWiFS – Sea-viewing Wide Field-of-view Sensor
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