916 research outputs found
Combined EEG-fMRI and tractography to visualise propagation of epileptic activity
In a patient with refractory temporal lobe epilepsy, EEG-fMRI showed activation in association with left anterior temporal interictal discharges, in the left temporal, parietal and occipital lobes. Dynamic causal modelling suggested propagation of neural activity from the temporal focus to the area of occipital activation. Tractography showed connections from the site of temporal lobe activation to the site of occipital activation. This demonstrates the principle of combining EEG-fMRI and tractography to delineate the pathways of propagation of epileptic activity
Computational studies into urea formation in the interstellar medium
Formation routes, involving closed shell, radical, and charged species for urea, have been studied using computational methods to probe their feasibility in the interstellar medium. All reactions involving closed shell species were found to have prohibitive barriers. The radical–radical reaction possesses a barrier of only 4 kJ mol−1, which could be surmountable. A charged species based route was also investigated. A barrier of only 8 kJ mol−1 was found in that case, when a partial water ice shell was included
Reduced anisotropy of water diffusion in structural cerebral abnormalities demonstrated with diffusion tensor imaging
We used diffusion tensor imaging (DTI) to investigate the behavior of water diffusion in cerebral structural abnormalities. The fractional anisotropy, a measure of directionality of the molecular motion of water, and the mean diffusivity, a measure of the magnitude of the molecular motion of water, were measured in 18 patients with longstanding partial epilepsy and structural abnormalities on standard magnetic resonance imaging and the results compared with measurements in the white matter of 10 control subjects. Structural abnormalities were brain damage (postsurgical brain damage, nonspecific brain damage, perinatal brain damage, perinatal infarct, ischemic infarct, perinatal hypoxia, traumatic brain damage (n = 3), mitochondrial cytopathy and mesiotemporal sclerosis), dysgenesis (cortical dysplasia (n = 2) and heterotopia) and tumors (meningioma (n = 2), hypothalamic hamartoma and glioma). Anisotropy was reduced in all structural abnormalities. In the majority of abnormalities this was associated with an increased mean diffusivity; however, 30% of all structural abnormalities (some patients with brain damage and dysgenesis) had a normal mean diffusivity in combination with a reduced anisotropy. There was no correlation between fractional anisotropy and mean diffusivity measurements in structural abnormalities (r = -0.1). Our findings suggest that DTI is sensitive for the detection of a variety of structural abnormalities, that a reduced anisotropy is the common denominator in structural cerebral abnormalities of different etiologies and that mean diffusivity and fractional anisotropy may be, in part, independent. Combined measurements of mean diffusivity and fractional anisotropy are likely to increase the specificity of DTI
Corn particle size and pelleting influence on growth performance, fecal shedding, and lymph node infection rates of salmonella enterica serovar typhimurium
Ninety-six pigs (initially 13.8 lb.) were used in a 28-d trial to determine the interactive effects between pelleting and particle size on Salmonella serovar Typhimurium shedding and colonization in a young growing pig model. The experiment was a 2 × 2 factorial arrangement consisting of meal or pelleted diets with fine or coarse ground corn. Pigs were fed the diets 1 wk pre-salmonella inoculation and allotted based on weight to one of four dietary treatments. For the main effect of particle size, pigs fed finer ground corn had significantly improved feed efficiency (P0.82). There was no difference in salmonella infection rates of mesenteric lymph nodes obtained on d 28 between treatments or main effects. Finer grinding and meal diets generally improved growth, feed intake, and
feed efficiency compared to pigs fed coarser
ground or pelleted feeds. However, particle
size or diet form did not alter fecal shedding or mesenteric lymph node infection rates of salmonella organisms in our study
Metallation–substitution of an α-oxygenated chiral nitrile
Deprotonation of a chiral alpha-oxygenated nitrile with the base 2,2,6,6-tetramethylpiperidylmagnesium chloride, TMPMgCl, gives rise to a chiral magnesiated nitrile, and this anion has sufficient configurational stability at low temperature to allow the formation of highly enantiomerically enriched substituted nitrile products after electrophilic quench
On the formation of urea in the ISM
Potential routes to the formation of urea were investigated using electronic structure methods. The most likely pathways involve either the reaction of the formamide and amine radicals or involve protonated isocyanic acid as a starting point
Effects of paylean (ractopamineâ‹…HCl) on finishing pig growth and variation
A total of 336 pigs were used in a 21-day
trial to determine the effect of Paylean (9.0
g/ton Ractopamine·HCl) on finishing pig
growth and variation. Pigs were allotted based on weight so that all pens had the same
initial weight and degree of variation within
the pen. Pigs fed Paylean had greater ADG and better feed efficiency than control-fed
pigs (P<0.05). However, no differences in
pen coefficient of variation were observed
(P>0.70). The results suggest that adding
Paylean to the diet improves finishing pig
growth performance but does not affect
weight variation within the pen
In vivo airway surface liquid Cl- analysis with solid-state electrodes
The pathogenesis of cystic fibrosis (CF) airways disease remains controversial. Hypotheses that link mutations in CFTR and defects in ion transport to CF lung disease predict that alterations in airway surface liquid (ASL) isotonic volume, or ion composition, are critically important. ASL [Cl-] is pivotal in discriminating between these hypotheses, but there is no consensus on this value given the difficulty in measuring [Cl-] in the "thin" ASL (∼30 μm) in vivo. Consequently, a miniaturized solid-state electrode with a shallow depth of immersion was constructed to measure ASL [Cl-] in vivo. In initial experiments, the electrode measured [Cl-] in physiologic salt solutions, small volume (7.6 μl) test solutions, and in in vitro cell culture models, with ≥93% accuracy. Based on discrepancies in reported values and/or absence of data, ASL Cl- measurements were made in the following airway regions and species. First, ASL [Cl-] was measured in normal human nasal cavity and averaged 117.3 ± 11.2 mM (n = 6). Second, ASL [Cl-] measured in large airway (tracheobronchial) regions were as follows: rabbit trachea and bronchus = 114.3 ± 1.8 mM; (n = 6) and 126.9 ± 1.7 mM; (n = 3), respectively; mouse trachea = 112.8 ± 4.2 mM (n = 13); and monkey bronchus = 112.3 ± 10.9 mM (n = 3). Third, Cl- measurements were made in small (1-2 mm) diameter airways of the rabbit (108.3 ± 7.1 mM, n = 5) and monkey (128.5 ± 6.8 mM, n = 3). The measured [Cl-], in excess of 100 mM throughout all airway regions tested in multiple species, is consistent with the isotonic volume hypothesis to describe ASL physiology
Transport properties of dense fluid argon
We calculate using molecular dynamics simulations the transport properties of
realistically modeled fluid argon at pressures up to and
temperatures up to . In this context we provide a critique of some newer
theoretical predictions for the diffusion coefficients of liquids and a
discussion of the Enskog theory relevance under two different adaptations:
modified Enskog theory (MET) and effective diameter Enskog theory. We also
analyze a number of experimental data for the thermal conductivity of
monoatomic and small diatomic dense fluids.Comment: 8 pages, 6 figure
- …