5,348 research outputs found

    SO(4,C)-covariant Ashtekar-Barbero gravity and the Immirzi parameter

    Get PDF
    An so(4,C)-covariant hamiltonian formulation of a family of generalized Hilbert-Palatini actions depending on a parameter (the so called Immirzi parameter) is developed. It encompasses the Ashtekar-Barbero gravity which serves as a basis of quantum loop gravity. Dirac quantization of this system is constructed. Next we study dependence of the quantum system on the Immirzi parameter. The path integral quantization shows no dependence on it. A way to modify the loop approach in the accordance with the formalism developed here is briefly outlined.Comment: 14 pages, LATEX; minor changes; misprints corrected; commutator of two secondary second class constraints correcte

    BF Actions for the Husain-Kuchar Model

    Get PDF
    We show that the Husain-Kuchar model can be described in the framework of BF theories. This is a first step towards its quantization by standard perturbative QFT techniques or the spin-foam formalism introduced in the space-time description of General Relativity and other diff-invariant theories. The actions that we will consider are similar to the ones describing the BF-Yang-Mills model and some mass generating mechanisms for gauge fields. We will also discuss the role of diffeomorphisms in the new formulations that we propose.Comment: 21 pages (in DIN A4 format), minor typos corrected; to appear in Phys. Rev.

    The Husain-Kuchar Model: Time Variables and Non-degenerate Metrics

    Get PDF
    We study the Husain-Kuchar model by introducing a new action principle similar to the self-dual action used in the Ashtekar variables approach to Quantum Gravity. This new action has several interesting features; among them, the presence of a scalar time variable that allows the definition of geometric observables without adding new degrees of freedom, the appearance of a natural non-degenerate four-metric and the possibility of coupling ordinary matter.Comment: LaTeX, 22 pages, accepted for publication in Phys. Rev.

    Hilbert space structure of covariant loop quantum gravity

    Full text link
    We investigate the Hilbert space in the Lorentz covariant approach to loop quantum gravity. We restrict ourselves to the space where all area operators are simultaneously diagonalizable, assuming that it exists. In this sector quantum states are realized by a generalization of spin network states based on Lorentz Wilson lines projected on irreducible representations of an SO(3) subgroup. The problem of infinite dimensionality of the unitary Lorentz representations is absent due to this projection. Nevertheless, the projection preserves the Lorentz covariance of the Wilson lines so that the symmetry is not broken. Under certain conditions the states can be thought as functions on a homogeneous space. We define the inner product as an integral over this space. With respect to this inner product the spin networks form an orthonormal basis in the investigated sector. We argue that it is the only relevant part of a larger state space arising in the approach. The problem of the noncommutativity of the Lorentz connection is solved by restriction to the simple representations. The resulting structure shows similarities with the spin foam approach.Comment: 20 pages, RevTE

    Uniqueness of the Fock representation of the Gowdy S1×S2S^1\times S^2 and S3S^3 models

    Full text link
    After a suitable gauge fixing, the local gravitational degrees of freedom of the Gowdy S1×S2S^1\times S^2 and S3S^3 cosmologies are encoded in an axisymmetric field on the sphere S2S^2. Recently, it has been shown that a standard field parametrization of these reduced models admits no Fock quantization with a unitary dynamics. This lack of unitarity is surpassed by a convenient redefinition of the field and the choice of an adequate complex structure. The result is a Fock quantization where both the dynamics and the SO(3)-symmetries of the field equations are unitarily implemented. The present work proves that this Fock representation is in fact unique inasmuch as, up to equivalence, there exists no other possible choice of SO(3)-invariant complex structure leading to a unitary implementation of the time evolution.Comment: 10 pages, minor changes, version accepted for publication in Classical and Quantum Gravit

    Global controllability tests for geometric hybrid control systems

    Get PDF
    Hybrid systems are characterized by having an interaction between continuous dynamics and discrete events. The contribution of this paper is to provide hybrid systems with a novel geometric formulation so that controls can be added. Using this framework we describe some new global controllability tests for hybrid control systems exploiting the geometry and the topology of the set of jump points, where the instantaneous change of dynamics take place. Controllability is understood as the existence of a feasible trajectory for the system joining any two given points. As a result we describe examples where none of the continuous control systems are controllable, but the associated hybrid system is controllable because of the characteristics of the jump set.Comment: 27 pages, 5 figure

    Characterization of new hybrid pixel module concepts for the ATLAS Insertable B-Layer upgrade

    Full text link
    The ATLAS Insertable B-Layer (IBL) collaboration plans to insert a fourth pixel layer inside the present Pixel Detector to recover from eventual failures in the current pixel system, especially the b-layer. Additionally the IBL will ensure excellent tracking, vertexing and b-tagging performance during the LHC phase I and add robustness in tracking with high luminosity pile-up. The expected peak luminosity for IBL is 2 to 3centerdot1034 cm-2s-1 and IBL is designed for an integrated luminosity of 700 fb-1. This corresponds to an expected fluence of 5centerdot1015 1 MeV neqcm-2 and a total ionizing dose of 250 MRad. In order to cope with these requirements, two new module concepts are under investigation, both based on a new front end IC, called FE-I4. This IC was designed as readout chip for future ATLAS Pixel Detectors and its first application will be the IBL. The planar pixel sensor (PPS) based module concept benefits from its well understood design, which is kept as similar as possible to the design of the current ATLAS Pixel Detector sensor. The second approach of the new three dimensional (3D) silicon sensor technology benefits from the shorter charge carrier drift distance to the electrodes, which completely penetrate the sensor bulk. Prototype modules of both sensor concepts have been build and tested in laboratory and test beam environment before and after irradiation. Both concepts show very high performance even after irradiation to 5centerdot1015 1 MeV neqcm-2 and meet the IBL specifications in terms of hit efficiency being larger than 97%. Lowest operational threshold studies have been effected and prove independent of the used sensor concept the excellent performance of FE-I4 based module concepts in terms of noise hit occupancy at low thresholds.Comment: Part of 9th International Conference on Position Sensitive Detectors (PSD9

    Asymptotics of Regulated Field Commutators for Einstein-Rosen Waves

    Get PDF
    We discuss the asymptotic behavior of regulated field commutators for linearly polarized, cylindrically symmetric gravitational waves and the mathematical techniques needed for this analysis. We concentrate our attention on the effects brought about by the introduction of a physical cut-off in the study of the microcausality of the model and describe how the different physically relevant regimes are affected by its presence. Specifically we discuss how genuine quantum gravity effects can be disentangled from those originating in the introduction of a regulator.Comment: 9 figures, 19 pages in DIN A4 format. Accepted for publication in Journal of Mathematical Physic

    Quantum Cylindrical Waves and Sigma Models

    Full text link
    We analyze cylindrical gravitational waves in vacuo with general polarization and develop a viewpoint complementary to that presented recently by Niedermaier showing that the auxiliary sigma model associated with this family of waves is not renormalizable in the standard perturbative sense.Comment: 11 pages (DIN A4), accepted in International Journal of Modern Physics
    corecore