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We discuss the asymptotic behavior of regulated field commutators for linearly
polarized, cylindrically symmetric gravitational waves and the mathematical tech-
niques needed for this analysis. We concentrate our attention on the effects brought
about by the introduction of a physical cutoff in the study of the microcausality of
the model and describe how the different physically relevant regimes are affected
by its presence. Specifically we discuss how genuine quantum gravity effects can
be disentangled from those originating in the introduction of a regulator. ©2005
American Institute of Physics.fDOI: 10.1063/1.1864251g

I. INTRODUCTION

Linearly polarized cylindrical waves, also known as Einstein-Rosen waves,1,2 provide a sym-
metry reduction of general relativity that can be used as a test bed for the quantization of the
theory. This system displays several interesting features that contribute to its relevance. On one
hand, it has an infinite number of local degrees of freedom and, hence, it is a genuine quantum
field theorysin contradistinction to other symmetry reductions, such as Bianchi models, that have
a finite number of global degrees of freedomd. On the other, the system is tractable both classically
and quantum mechanically, thus allowing us to derive exact consequences independent of any
approximation scheme.3–8 The main reason behind this success and tractability is the fact that the
gravitational degrees of freedom of the model are encoded in a free, massless, axially symmetric,
scalar field that evolves in an auxiliary Minkowskian background.

In previous papers we have analyzed the issue of microcausality in this system; in particular,
we have studied in detail the smearing of light cones owing to the quantization of the gravitational
field.7,8 The main tool for this type of analysis is the studyin vacuo of the field commutator
evaluated at different space–time points. As is well known, the commutator of quantum fields
reflects the causal structure of space–timesMinkowskian space–time in ordinary perturbative
quantum field theoryd in the sense that the quantum fields in spatially separated space–time points
commute. This is true for all standard types of quantum fields, i.e., scalar, fermion, or vector fields,
though issues related to gauge invariance must be carefully considered in this last case. In the
specific model that we are interested in, gauge invariance has been discussed in Ref. 9. The
authors of that paper conclude that it is correct to use the Ashtekar-Pierri gauge fixed action,
written in terms of the axially symmetric scalar field, to derive gauge invariant information about
the model.
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In a recent work8 we discussed the situation when no cutoff is introduced in the system,
studying the unregulated commutator. The main results reached were the following. First, one can
clearly see that light cones are smeared by quantum gravity effects; in fact it is possible to obtain
a quantitative measure of this smearing and show how sharp light cones are recovered in the limit
of large distances as compared to the natural length scale of the model, the Planck length. It is also
interesting to point out that the asymptotic behavior of the commutator in the different physically
relevant regimes strongly depends on the causal relationship between the different space–time
points involved. Second, one finds a singularity structure in the commutator that differs from that
of the free theory; in particular, the field commutator for equal values of the radial coordinateR is
singular. Finally, one observes that, in the case when one of the space–time points that appear in
the commutator corresponds to the symmetry axis, there are quantum effects that persist for large
values of the difference of the time coordinates. This effect is reminiscent of the large quantum
gravity effects first discussed by Ashtekar.4,6,10,11

The purpose of this paper is to study how the conclusions of Ref. 8 are changed by the
introduction of a cutoff. As is well known, regulators are generally necessary in order to have
well-defined quantum field theories. One can justify its use, for example, by noticing that the
action of the field operator on the vacuum in a Fock space is not a vector in the Hilbert space
because it has infinite norm. In order to have a well-defined action of the field operator one
regulates it by introducing smearing functions that render the norms of these states finite. The
problem then consists in removing these regulatorssor rather showing that the physical results are
independent of themd.

In principle, it is possible to argue that the results derived in the absence of regulators
somehow approximate those derived after their introduction; this is straightforward to see in the
case of cutoffs. In the presence of a cutoffL, the improper integrals that define the field commu-
tator become proper because the integration region is a closed intervalf0,Lg. For a given value of
the parameters that appear in the integralsinvolving the values of the space–time coordinates of
the quantum fields and the gravitational constantd it is always possible to choose a value forL

such that the integral with the cutoff is well approximated by the integral extended tof0,`d.
Of course it is conceivable that the cutoff is not just a mathematical device but rather a

physical scale defining a fundamental limit for the resolution of our measurements. If space–time
becomes discrete at short distancesssuch as the Planck lengthd, the continuum space–time picture
breaks down and, certainly, it would be difficult to justify the extension of the integrals involved
in the definition of field commutatorssor Smatrix elements, for that matterd to infinite intervals in
momentasinverse lengthd. Our point of view here is that the introduction of a cutoff can mimic
some of the effects appearing after a successful quantization of gravitysfor example, in the loop
quantum gravity approachd, and hence we plan to study its effect within the consistent framework
provided by the Einstein-Rosen waves. It is also interesting to point out here that the cutoff by
itself can produce some of the effects expected from quantum gravity. In particular, it is possible
to show that light cones are also smeared by cutoffs.12 In our opinion this makes it necessary to
study in detail how the effects of the cutoff and quantum gravity can be disentangled.

The paper is organized as follows. After this introduction, we briefly review the main results
about microcausality in quantum cylindrical gravitational waves and introduce the commutators
that we will discuss in the rest of the paper. We will then study the field commutators in the
presence of a cutoff with the help of the asymptotic techniques already employed in Ref. 8. Here
the situation is simpler because we will only have to consider integrals over closed intervals. We
will discuss one by one the asymptotic behaviors in the different parameters involved. In Sec. VI
we will derive a power series expansion in the gravitational constant for the commutator in the
presence of a cutoff in the spirit of ordinary perturbative quantum field theory, and discuss the
uniform convergence of this series under appropriate conditions on the cutoff in Sec. VII. We end
the paper with a discussion of our results and our conclusions.
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II. THE FIELD COMMUTATOR

Einstein-Rosen waves describe topologically trivial space–times with two linearly indepen-
dent, commuting, spacelike, and hypersurface orthogonal Killing vector fields1,2,13 endowed with
a metric that can be written as

ds2 = eg−cs− dT2 + dR2d + e−cR2du2 + ecdZ2. s1d

Here we use the coordinatessT,R,u ,Zd, TPR, RP f0,`d, uP f0,2pd, ZPR, andc and g are
functions only ofR andT. The Einstein field equations are very simple. The scalar fieldc satisfies
the wave equation for a massless, axially symmetric scalar field in three dimensions,

]T
2c − ]R

2c −
1

R
]Rc = 0,

and the functiong can be expressed in terms of this field3,6 as

gsRd =
1

2
E

0

R

dR̄R̄fs]Tcd2 + s]R̄cd2g.

We will use in the following a system of units such thatc="=1 and defineG;"G3, whereG3

denotes the gravitational constant per unit length in the direction of the symmetry axis.14 The
function gsRd sapart from a factor of 8Gd has a simple physical interpretation: it is the energy of
the scalar field in a ball of radiusR whereasg` denotes limR→`gsRd sthe energy of the whole
two-dimensional flat spaced. It is also possible to show3,7 that g` / s8Gd coincides with the Hamil-
tonianH0 of the system obtained by a linearization of the metrics1d.

In order to have a unit asymptotic timelike Killing vector and a physical notion of energysper
unit lengthd we introduce the coordinatesst ,R,u ,Zd defined byT=e−g`/2t. In these coordinates the
metric takes the form2,13

ds2 = eg−cs− e−g`dt2 + dR2d + e−cR2du2 + ecdZ2.

By taking a sufficiently fast fall-off forc as R→`, this metric describes asymptotically flat
cylindrical space–times such that]t is a unit timelike Killing vector in the asymptotic region. In
the 2+1-dimensional framework these space–times are asymptotically flat at spacelike and null
infinities15,16 sthe appropriate introduction of null infinity will be needed in order to study theS
matrix of the modeld. It is also worthwhile noting that these space–times have a nonzero deficit
angle.

The Einstein field equations can be obtained from a Hamiltonian action principle.13,17,18A
remarkablesand usefuld feature of the physical HamiltonianH sassociated with the physical time
td is the fact that it is a function of the Hamiltonian corresponding to the free scalar field,H0:

H = EsH0d =
1

4G
s1 − e−4GH0d.

In terms of theT-time and imposing regularity at the axisR=03, the classical solutions for the
field c can be written as

csR,Td = Î4GE
0

`

dkJ0sRkdfAskde−ikT + A†skdeikTg,

whereAskd and its complex conjugateA†skd are fixed by the initial conditions. The free Hamil-
tonianH0 can be written now as
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g`

8G
= H0 =E

0

`

dkkA†skdAskd.

Using this expression, we obtain thet-evolution of the field

cEsR,td = Î4GE
0

`

dkJ0sRkdfAskde−ikte−g`/2
+ A†skdeikte−g`/2

g.

The quantization can be carried out in the usual way by introducing a Fock space where

ĉsR,0d, the quantum counterpart ofcsR,0d, is the operator-valued distribution19 given by20

ĉsR,0;L = `d = ĉEsR,0;L = `d = Î4GE
0

`

dkJ0sRkdfÂskd + Â†skdg. s2d

Its action on Fock space is determined by those ofÂskd and Â†skd, the annihilation and creation

operators, with nonvanishing commutators given byfÂsk1d ,Â†sk2dg=dsk1,k2d.
We can regulate the field by introducing suitable functionsgskd that render finite the norms of

the states obtained by acting with the quantum field on Fock space vectors. In the following we
will make the simplest choicegskd=xf0,Lkgskd sherexfa,bg denotes the characteristic function of the
interval fa,bgd. By doing this the integration region ins2d becomes compact and we have

ĉsR,0d = ĉEsR,0d = Î4GE
0

Lk

dkJ0sRkdfÂskd + Â†skdg. s3d

Evolution in T is given by the unitary operatorÛ0sTd=exps−iTĤ0d, where

Ĥ0 =E
0

`

dkkÂ†skdÂskd

is the quantum Hamiltonian operator of a three-dimensional, axially symmetric scalar field. The
cutoff-regulated quantum scalar field in the Heisenberg picture is hence given by

ĉsR,Td = Û0
†sTdĉsR,0dÛ0sTd = Î4GE

0

Lk

dkJ0sRkdfÂskde−ikT + Â†skdeikTg.

If we describe the evolution in our model in terms of the physical timet, the quantum Hamiltonian

is Ĥ=EsĤ0d=s1−e−4GĤ0d / s4Gd and unitary evolution is given byÛstd=exps−itĤd. With this time
evolution the annihilation and creation operators in the Heisenberg picture are

ÂEsk,td ; Û†stdÂskdÛstd = expf− itEskde−4GĤ0gÂskd,

ÂE
†sk,td = Â†skdexpfitEskde−4GĤ0g,

whereEskd=s1−e−4Gkd / s4Gd, and the regulated field operator evolved with the physical Hamil-

tonian fthat we denote asĉEsR,tdg is given by

ĉEsR,td = Î4GE
0

Lk

dkJ0sRkdfÂEsk,td + ÂE
†sk,tdg.

The field commutatorfĉEsR1,t1d ,ĉEsR2,t2dg can be computed from these expressions.7 Since we
are dealing with an effectively interacting theory this operator is not proportional to the identity in
the Fock space basis that we are using and, hence, we have to consider its matrix elements. As in
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previous work we will concentrate on the vacuum expectation value. If a cutoffLk is introduced,
this is given by

1

8iG
k0ufĉEsR1,t1d,ĉEsR2,t2dgu0l =E

0

Lk

dkJ0sR1kdJ0sR2kdsinF t2 − t1
4G

s1 − e−4GkdG , s4d

which can be seen to depend on the time coordinates only through their differencet2− t1, which we
will assume in the following to be positive. Notice that it depends symmetrically onR1 andR2.
The functional dependence inG is less trivial, a fact that requires special attention when studying
the limit in which the relevant lengths and time differences are much larger than the Planck
length.8

It is convenient to refer the dimensional parameters of these integrals to another length scale,
which we choose asR1. We hence introduceR2=rR1, t2− t1=R1t, andl=R1/4G and rewrites4d as

1

8iG
k0ufĉEsR1,t1d,ĉEsR2,t2dgu0l =

l

R1
JHE

0

Lq

dqJ0slqdJ0srlqdeitls1−e−qdJ s5d

after introducing the new variablek=q/ s4Gd. HereJ denotes the imaginary part andLq=4GLk.
Physically, the cutoffLk swhich in principle has the dimensionality of an inverse lengthd could

be interpreted as having its origin in the existence of a minimum length. This comes out naturally
in loop quantum gravity where space is discrete and the area and volume operators have minimum
eigenvalues of the order of the Planck area and volume, respectively. In fact, the existence of a
minimum lengthsof the size of the Planck scaled can be considered a generic feature of essentially
every quantum theory.21 The interpretation of the adimensional cutoffLq would follow from that
of Lk, so it may be reasonable to expect that it be a number of order unity; nevertheless we will
treat it as a free parameter in the following.

III. ASYMPTOTIC BEHAVIOR IN r

Let us start by considering the behavior ofs5d when the parameterr grows to infinite or
approachesr=0. This integral can be written as a standardh-transform22 by the change of vari-
ablest=ql. The most convenient way to get its asymptotic behavior inr→` is by rewriting it in
the form

1

R1
JFE

0

`

dtJ0srtdJ0stdeitls1−e−t/ld −E
R1Lk

`

dtJ0srtdJ0stdeitls1−e−t/ldG . s6d

One can then use the asymptotic behavior obtained for the first integral in Ref. 8, and find the
asymptotics of the second integral by standard integration by partsfemploying the fact that23

J0skd=−J08skd /k−J09skdg. By doing this one gets the following two contributions:

1

R1
F t

2lr3 +
1

r5S 9t

8l
−

3t

8l3 +
9t2

2l
DG + OS 1

r7D ,

1

rR1
JfJ1sLkR1rdJ0sLkR1deitls1−e−LkR1/ldg + OS 1

r5/2D .

The first one is cutoff independent but subdominant with respect to the second, hence we see
that the presence of a cutoff changes the asymptotic behavior inr. This is the kind of behavior that
one would expect even in a Lorentz covariant theory after the introduction of a cutoff because of
the breaking of the Lorentz symmetry. The novel feature here is the presence of cutoff independent
terms. Although the cutoff-dependent one dominates in the asymptotic limit, there may be a
transient regime, whose onset will be controlled by the value ofLk, in which the asymptotic
behavior is given by the first term. This will be most evident whenLk→`.
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In the r→0 limit we get

1

R1
JE

0

R1Lk

dtJ0stdeitls1−e−t/ld + Osrd =
l

R1
JE

0

Lq

dqJ0slqdeitls1−e−qd + Osrd, s7d

as a result of the continuity atr=0 of the integral defining the commutators5d.

IV. ASYMPTOTIC BEHAVIOR IN t

The integral ins5d has the convenient form of anh-transform and, hence, it can be studied by
standard Mellin transform methods22 if the asymptotic parameter is chosen to ber; however, this
is no longer true if the asymptotic parameter is taken to bet swhich corresponds to considering
large separations in the time coordinatesd. This fact introduces some mathematical difficulties in
the asymptotic analysis. In this case one has to consider the casesr=0 andrÞ0 separately.

If r=0, one finds that the asymptotic behavior whent→` without the cutoff is given by8

1

R1
Î l

2p log t
Jheifsp/4d+tl−l logstldgesp/2dlGsild + e−ifsp/4d−tl−l logstldge−sp/2dlGs− ildj + OS 1

log t
D ,

s8d

whereas forrÞ0 we get

1

2pR1
Îr log t

Jheifsp/2d+tl−ls1+rdlogstldgesp/2dls1+rdGfils1 + rdg

+ e−ifsp/2d−tl−ls1+rdlogstldge−sp/2dls1+rdGf− ils1 + rdg

+ eiftl−ls1−rdlogstldgesp/2dls1−rdGfils1 − rdg

+ eiftl−lsr−1dlogstldgesp/2dlsr−1dGfilsr − 1dgj + OS 1

slog td2D . s9d

The most interesting feature of these expressions is their unusual dependence on the asymptotic
parametert ; in fact, the dependence on inverse powers of logarithmssespecially on the inverse
square root of logtd cannot be obtained by direct application of the usual asymptotic expressions
derived by Mellin transform techniques.8 It is also remarkable how slowly the commutator decays
in t, in particular in the axisr=0, a fact that is suggestive of the large quantum gravity effects
discussed by Ashtekar.4 Outside the axis the decay is faster but still quite slow. A consequence of
the different asymptotic behaviors int for r=0 andrÞ0 is the impossibility to recovers8d as the
limit when r→0 of s9d. As we can see, the frequency of the oscillations of the commutator int
is controlled byl sproportional to the inverse ofGd in such a way that although the amplitude of
the oscillations decays very slowly, they will average to zero on scales larger than the Planck
length.

When we introduce a cutoffLk, the above asymptotic expressions change to

1

R1
JH i

t
f1 − eitls1−e−LkR1/ldeLkR1/lJ0sLkR1dJ0srLkR1dgJ + OS 1

t2D , s10d

valid both for r=0 andrÞ0. This can be obtained by straightforward integration by parts. An
interesting situation develops at this point because the asymptotic behavior of the integral int
behaves in a discontinuous way in the cutoff. In the analysis carried out to study the asymptotic
behavior inr we found out that the cutoff-dependent term, in spite of being dominant, goes to zero
in the limit Lk→`. Here the situation is different: taking nowLk→` in s10d does not lead to the
asymptotic expressions corresponding toLk=`. That is, the asymptotic behavior of the improper
integral in s4d is not the limit whenLk→` of s5d. As in the case of the asymptotics inr, one
expects that there must be a transient regime in which the behavior int of s5d is given bys8d and
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s9d. We will not consider here a precise characterization of this transient behavior for arbitrary
values of the relevant parameters because its main properties can be conveniently discussed, at
least for largel, by looking at thel→` asymptotics of the commutator in thesr ,td plane.

The t→0 limit is easy to analyze. In fact what we find, both with and without the cutoff, is
that the series obtained by expandingeitls1−e−t/ld in powers ofe−t/l, exchanging integration and
infinite sum, and computing the resulting integrals gives a series that converges to the value of the
commutator.

V. ASYMPTOTIC BEHAVIOR IN l

The asymptotic behavior inl is studied by following the procedure described in Ref. 8. It is
worth remarking that the limitl→` of the regulated field commutator cannot be identified with
that in which the gravitational constantG vanishes if one admits that the dimensionful cutoff
Lk,` is kept constant in principle. On the contrary, the two limits could be considered equivalent
only under the assumption thatLk increases as the inverse ofG for small gravitational constant, so
that its dimensionless counterpartLq=4GLk may remain fixed.

The analysis of the asymptotics inl when the cutoff is present is simultaneously simpler in
some respects and more complicated in others compared with the case when no cutoff is intro-
duced. It is simpler because the lengthy analysis needed to discuss the asymptotics of the improper
integral is not necessary now. It is more complicated in the sense that the final asymptotic expres-
sions contain additional terms and also because the number of regions with differentl-asymptotic
regimes in thesr ,td plane increases.

We have to consider now the casesr=0 andrÞ0 separately. Let us consider firstr=0 and
write the rhs ofs5d as8

JH−
ileitl

2pR1
E

0

Lq

dqR
g

dt
1

t
elfsq/2dst−1/td−ite−qgJ , s11d

after using the usual integral representation for the Bessel functionsJn sn=0,1, . . .d,

Jnszd =
1

2pi
R

g

dt

tn+1esz/2dst−1/td,

whereg is a closed, positively oriented, simple path in the complex plane surrounding the origin.
Notice that we are integrating an integrable function in a compact region, so we can write the
integrals in any order we want. The asymptotic analysis ofs11d can be carried out by following the
same steps as in Ref. 8. As we did there, it is useful to introduce neutralizers to split the integral
in three piecesI j, j =1,2,3, andchoose appropriate contours for each of them. These integrals are

I j ; JH−
ileitl

2pR1
E

0

Lq

dqR
g

dtn jsqd
1

t
elfsq/2dst−1/td−ite−qgJ ,

where we have introduced the neutralizer functionsn jsqd, j =1,2,3,satisfyingn1+n2+n3=1 in
f0,Lqg and

n1sqd = 1 if q P f0,a1g,

n1sqd = 0 if q P fa2,Lqg,

n2sqd = 0 if q P f0,a1g ø fb2,Lqg,

n2sqd = 1 if q P fa2,b1g,
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n3sqd = 0 if q P f0,b1g,

n3sqd = 1 if q P fb2,Lqg,

with 0,a1,a2,b1,b2,Lq sthese parameters are chosen as in Ref. 8d. By doing this the
effective integration regions inq aref0,a2g, fa1,b2g, andfb1,Lqg and the boundaryq=0 appears
only in the first.

The asymptotics inl of the integralI1 is best obtained by choosing an integration contour
satisfyingRst−1/tdø0 sthat passes necessarily throught= i andt=−id. By using the same method
of Ref. 8 we see that the first two relevant terms are given by the contour integrals

1

pR1
JHiR

g

dt

t2 + 2itt − 1J ,

−
1

2pR1
JH i

l
R

g

dt
8itt2

st2 + 2itt − 1d3J ,

whose sum gives

1

R1
Ît2 − 1

for t . 1

and

ts1 + 2t2d
2R1ls1 − t2d5/2 for t , 1.

Although the second term will be subdominant with respect to some of the contributions coming
from I2 and I3, it improves the approximation of the full commutator obtained from the asymp-
totics in l in the regiont,1.

The contribution ofI3 to the asymptotics inl is obtained from the contour integralscorre-
sponding to the boundary atq=Lqd

JH ieitl

2pR1
R

g

dt
2

t

st − 1/t + 2ite−LqdeslLq/2dst−1/td−ite−Lq

Lq
2st + 1/td2 − st − 1/t + 2ite−Lqd2 J .

The asymptotics inl of this integral can be easily studied by using the method of steepest
descents. This gives

JH 2ieitls1−e−Lqd

R1st2e−2Lq − 1dÎ2plLq
Fite−Lq sinSlLq −

p

4
D − cosSlLq −

p

4
DGJ .

Finally, the integralI2 sfor which we choose forg the curveutu=1d only contributes when the
stationary points of the exponent are in the integration region. This happens only when 1,t
,eLq. The contribution to the first relevant order inl is8

JH 1

R1

eilst−log t−1d

Îlog t
J .

Adding up the different terms we get
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us1 − td
ts1 + 2t2d

2R1ls1 − t2d5/2 + ust − 1d
1

R1
Ît2 − 1

+ ust − 1duseLq − tdJH 1

R1

eilst−log t−1d

Îlog t
J

+ JH 2ieitls1−e−Lqd

R1st2e−2Lq − 1dÎ2plLq
Fite−Lq sinSlLq −

p

4
D − cosSlLq −

p

4
DGJ , s12d

whereu denotes the step function.
We see that the final result consists of several contributions: the free commutator for an

infinite cutoff, a 1/l correction fort,1, the term with the 1/Îlog t dependence for 1,t,eLq,
and a cutoff-dependent contribution for all values oft that fall off to zero whenLq→`. If the
cutoff goes to infinity, the commutator can be approximated by the one obtained in Ref. 8;
however, if it is of order onesas would be the case if it is defined by the Planck lengthd, then that
approximation is no longer valid. Notice that the values oftP s1,eLqd are those for which the
asymptotics provided by the unregulated commutator are a correct approximation. This is roughly
the transient region in thet parameter mentioned in the previous subsection.

Figures 1–3 show the behavior of the field commutatorsover 8iGd whenr=0 as a function of
t for several values ofLq. As we can see, the asymptotic approximation becomes singular between
regions with different asymptotic regimes, but approximates well the exact value of the commu-
tator sobtained by numerical methodsd for the remaining values oft. Notice that the singularity at
t=eLq of the asymptotic expansion lies outside the plotted region in Figs. 2 and 3.

In order to study therÞ0 case we start by writing the rhs ofs5d as

JH−
leitl

4p2R1
E

0

Lq

dqR
g1

dt1R
g2

dt2
1

t1t2
elfsqdst1−1/t1d/2+rqst2−1/t2d/2−ite−qgJ s13d

after employing the usual integral representation for the Bessel functionsJn sn=0,1, . . .d. Again it
is helpful to introduce the same neutralizers as above to split the integral in three piecesI j, j
=1,2,3.

FIG. 1. Asymptotic approximation inl for the field commutator over 8iG as a function oft for r=0, G=0.02, andLq

=2. We compare it both with a numerical computation of the integral that defines it and with the unregulated free
commutator. As we can see, the approximation is good except at the points where the asymptotic behavior changesst
=1 andt=eLqd. Notice the difference in the amplitude of the oscillations fort,eLq andt.eLq.
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The integralI1 gives the following two contributions:

JH 1

2p2R1
R

g1

dt1R
g2

dt2
1

rt1st2
2 − 1d + t2st1

2 + 2itt1 − 1dJ s14d

and

JH−
2it

p2R1l
R

g1

dt1R
g2

dt2
t1
2t2

2

frt1st2
2 − 1d + t2st1

2 + 2itt1 − 1dg3J . s15d

Both integrals can be computed exactly8 in terms of complete elliptic integrals of first and second
kinds. The first one gives the contribution of the unregulated free commutatorsi.e., with infinite
cutoffd.

In order to describe it we define regions I, II, and III by 0,t, ur−1u, ur−1u,t,r+1, and
r+1,t, respectively. They are shown in Fig. 4. In region I the free commutator is zero, whereas
in regions II and III it is given by

region II,

1

pR1
Îr

KSÎt2 − sr − 1d2

4r
D ,

FIG. 2. Asymptotic approximation inl for the field commutator over 8iG as a function oft for r=0, G=0.02, andLq

=4 scompared both with a numerical computation of the integral that defines it and with the unregulated free commutatord.
As we can see, the asymptotic approximation is good except att=1. Notice that the cutoff introduces a modulation of the
amplitude in the region 1,t,eLq. The singularity of the asymptotic approximation att=eLq lies outside the plotted
region.
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region III,

2

pR1

1
Ît2 − s1 − rd2

KSÎ 4r

t2 − s1 − rd2D .

The second contributions15d can be computed by the method outlined in Appendix IV of Ref. 8,
obtaining

region I,

t

2pR1l
H2f1 + r4 + 2t2 − 3t4 + 2r2st2 − 1dgÎs1 + rd2 − t2

s1 + r − td2s1 − r + td2s− 1 +r + td2s1 + r + td2 ESÎ 4r

s1 + rd2 − t2D
−

2t2

fr4 + st2 − 1d2 − 2s1 + t2dr2gÎs1 + rd2 − t2
KSÎ 4r

s1 + rd2 − t2DJ , s16d

region II,

t

2pR1l
H1 − 2r2 + r4 + t2 − 2rt2 + r2t2 − 2t4

Îrfs1 − rd2 − t2gfs1 + rd2 − t2g2
KSÎs1 + rd2 − t2

4r
D

+
4Îrf1 − 2r2 + r4 + 2t2 − 3t4 + 2r2t2g

fr4 + st2 − 1d2 − 2s1 + t2dr2g2 ESÎs1 + rd2 − t2

4r
DJ . s17d

The value ofs15d in region III is zero.

FIG. 3. Asymptotic approximation inl for the field commutator over 8iG as a function oft for r=0, G=0.02, andLq

=10 scompared both with a numerical computation of the integral that defines it and with the unregulated free commuta-
tord. As we can see, the asymptotic approximation is good except att=1. The asymptotic approximation obtained in Ref.
8 is good in a large region in thet axis. The singularity of the asymptotic approximation att=eLq lies outside the plotted
region.
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The integralI3, on the other hand, can also be studied by the methods described in Ref. 8. The
first relevant term to its asymptotic expansion in inverse powers ofl is derived from the double
contour integral

JH eitl

4p2R1
R

g1

dt1R
g2

dt2
2

t1t2

ft1 − 1/t1 + rst2 − 1/t2d + 2ite−LqgelfsLq/2dst1−1/t1d+rsLq/2dst2−1/t2d−ite−Lqg

Lq
2fst1 + 1/t1d2 + r2st2 + 1/t2d2g − ft1 − 1/t1 + rst2 − 1/t2d + 2ite−Lqg2J ,

s18d

corresponding toq=Lq and whose asymptotic behavior can be determined by employing standard
techniques for multiple integrals.22 In this way we obtain the following contribution:

1

2pR1LqlÎr
HsinflLqs1 + rd − tls1 − e−Lqdg

1 + r − te−Lq
−

sinflLqs1 + rd + tls1 − e−Lqdg
1 + r + te−Lq

+
cosflLqs1 − rd − tls1 − e−Lqdg

1 − r − te−Lq
−

cosflLqs1 − rd + tls1 − e−Lqdg
1 − r + te−Lq

J . s19d

Finally, the integralI2 is written in terms of a neutralizer that vanishes atq=0 andq=Lq. This
integral is best studied by choosing the unit circumference centered in the origin of the complex
plane as the integration contourg. The contributions of this integral to the asymptotics ofs13d
come from the stationary points of the exponent in the integrand whenever they are within the
integration region. This fact is controlled by the value of the cutoffLq. The result is

hust − r + 1dufsr − 1deLq − tgusr − 1d

+ ust + r − 1dufs1 − rdeLq − tgus1 − rdjJH e−ip/4eilft+ur−1us1+logt/ur−1udg

R1
Î2plru1 − rulogt/u1 − ruJ

+ ust − r − 1dufsr + 1deLq − tgJH eip/4eilft+sr+1dslog1+r/t−1dg

R1
Î2plrs1 + rdlogt/1 + r

J ,

where the step functions define the regions where the different stationary points contribute. As we
can see and it is explained in Fig. 5, there are two contributions in some parts of thesr ,td plane,

FIG. 4. Regions in thesr ,td plane used in the discussion of thel asymptotics and the free commutator. Region I is defined
by 0,t, ur−1u, region II by ur−1u,t,r+1, and region III byr+1,t.
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only one in some other parts, and no contribution in the remaining ones. Notice that, whenever
they differ from zero, these contributions are dominant with respect to those coming from the
other integrals.

Several points are now in order. First it is interesting to realize that the singularity atr=1 that
exists when the cutoff is taken to be infinitesand is obviously absent nowd shows up as the region
defined by the linest=eLqs1−rd, t=eLqsr−1d, and t=eLqsr+1d shrinks with growingLq. An-
other interesting feature of the commutator when the cutoff is present is the appearance of some
regions where the leading asymptotic behavior is not given by the expressions obtained in Ref. 8
for infinite cutoff, namely the regions witht. u1−ru labeled 0 in Fig. 5 and the region labeled 1
that connects them. On the contrary, there are two regions where two stationary points contribute
to the asymptotics just as in theLq→` case, showing the characteristic slow decay in thet
direction.24 Of these two regions, the one closer to the axis is bounded, whereas the second one

FIG. 5. Regions in thesr ,td plane used in the discussion of thel asymptotics in the presence of a cutoffLq=1. The label
of each region indicates how many critical points contribute to the asymptotic expansion inl.
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fdefined by the linest=eLqsr−1d andt=r+1g is not. The effect of the symmetry axis is evident
in the sense that it is precisely there where one of the lines that limits the boundary of this region
starts, namelyt=r+1.

As we can see, the influence of the cutoff is important in some parts of thesr ,td plane, but
there are others where the asymptotic behavior is described at leading orderssd by the unregulated
l→` limit. The consideration of these different regions helps in describing the intermediate
regimes where the infinite cutoff approximation is expected to work, at least for large values ofl.
Finally, we want to point out that the most dramatic quantum effect observed when the cutoff is
infinite, the very slow falloff of the commutator at the axis in thet direction, is no longer present
after introducing a regulator. This casts some doubts about the “observability” of large quantum
gravitational fluctuations at the axis. These behaviors can be visually appreciated in Figs. 6–9.

VI. POWER EXPANSION IN G

In the above sections we have discussed the asymptotics of the regulated field commutator as
a function ofr, l, andt. These are dimensionless parameters obtained by usingR1 as a length
scale. We want to discuss now the possibility of expanding this commutator as a power series in
G. The main motivation to consider this issue is that one would expect to arrive at an expansion
of this kind when adopting a standard perturbative approach for the treatment of the problem. As
we will see, this can be done in a rather straightforward way if a cutoff is introduced in the system.
However, our description breaks down when the cutoff is removed.

Let us analyze then the expansion of the vacuum expectation value of the commutator in
powers of the quantum gravitational constant25 G=G3". To this end we rewrites4d as

FIG. 6. Density plots of the commutator forG=0.02 and different values ofLq. Comparing the results with those of Ref.
8, we can see that the commutator in the regions labeled 2 in Fig. 4 is essentially equal to the one corresponding to an
infinite cutoff. Notice also the process by which the singularity atR1 appears.
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FIG. 7. Asymptotic approximation inl for the field commutator over 8iG as a function oft for G=0.02,r=3, andLq

=1 compared with a numerical approximation. The regions with different asymptotic regimes are shown. The asymptotic
approximation is good except at the boundaries between these regions. The different types of behavior are also evident.

FIG. 8. Asymptotic approximation inl for the field commutator over 8iG as a function oft for G=0.02,r=1.25, and
Lq=4 compared with a numerical approximation.
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1

8iG
k0ufĉEsR1,t1d,ĉEsR2,t2dgu0l =E

0

Lk

dkJ0sR1kdJ0sR2kdsinFkR1t
s1 − e−qd

q
G . s20d

With our conventions, bothkR1t andq=Gk are dimensionless, whereask can be regarded to have
dimensions of an inverse length. Note that all the dependence onG is contained inq, accepting
that the cutoffLk is fixed. Thus, in order to arrive at the desired series, we will expand the
integrand in powers of the variableq. At this point, it is worth remarking that, had we described
the regulated commutator by means of the dimensionless cutoffLq=4GLk as in previous
sections,26 it would not have been possible to single out the dependence on the gravitational
constant via that onq.

We will use the following formulas for the Taylor expansion of the functions involved in our
expressions20d and the composition of the resulting series, assuming for the moment their con-
vergence:

gsqd ª
1 − q − e−q

q
= o

n=1

`
s− qdn

sn + 1d!
, s21d

sinskR1t + yd = sinskR1tdo
m=0

`

s− 1dm y2m

s2md!
+ cosskR1tdo

m=0

`

s− 1dm y2m+1

s2m+ 1d!
, s22d

fgsqdgm = Fo
n=1

`
s− qdn

sn + 1d!Gm

= o
p=m

`

apfmgs− qdp, s23d

FIG. 9. Asymptotic approximation inl for the field commutator over 8iG as a function oft for G=0.02,r=1.25, and
Lq=10 compared with a numerical approximation.
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apfmg ª o
sspumd

p
i=1

m
1

sni + 1d!
, s24d

where the range of the last sum extends to the sets ofm integersni given by

sspumd ª Hni ù 1;o
i=1

m

ni = pJ . s25d

Interchanging the sum and integration orders, one then obtains the formal series

1

8iG
k0ufĉEsR1,t1d,ĉEsR2,t2dgu0l = o

p=0

` E
0

Lk

dkJ0sR1kdJ0sR2kds− 4GkdpFpskR1td, s26d

with

FpskR1td ª sinskR1td o
m=1

intfp/2g
s− 1dm

s2md!
apf2mgskR1td2m

+ cosskR1td o
m=0

intfsp−1d/2g
s− 1dm

s2m+ 1d!
apf2m+ 1gskR1td2m+1, p ù 1,

F0skR1td ª sinskR1td. s27d

Here, the function intfxg is the integer part ofx, and the sum overm that multiplies the function
sinskR1td is understood to vanish whenp=1. Note that, in the case of infinite cutoff, the first
sp=0d term reproduces the commutator of the free-field theory. Moreover, then all thepù1
additions to the free field contribution are integrals overf0,`d of oscillating, nonbounded func-
tions and, hence, at best conditionally convergent. So, in the unregulated theorysLk=`d, the
above expansion should be taken only as a formal expression, and therefore we expect that the
corresponding vacuum expectation value of the field commutator is not analytic inG.

Of course these problems disappear when we admit the existence of a finite cutoff 0,Lk

,`. Taking into account that all the functionsFpskR1td are analytic ink around the positive real
axis, becauseFp is a finite combination of products of analytic functions, and that so are the
zeroth-order Bessel functions that appear in the integrals ofs26d, it is easy to conclude that all
those integrals are well defined when they are restricted to a compact intervalf0,Lkg. Thus, each
term in the power seriess26d is finite for any finite positive value ofLk.

In the rest of this section, we will discuss the formal manipulations that we have carried out
with infinite sums in order to deduce the above expansion. First, notice that the Taylor series in
s21d, which is obtained from that of the exponential function, has an infinite convergence radius.
When this series is substituted ins20d, one obtains a trigonometric function similar to that on the
lhs of s22d, but with y=kR1tgsqd expanded in powers ofq. On the other hand, relations22d is just
the formula for the sine of the sum of two angles, with the resulting functions siny and cosy
replaced with their Taylor expansion. The series compositions sinfkR1tgsqdg and cosfkR1tgsqdg
can then be rearranged without problems employing forfgsqdgm the value given ins23d because
gsqd swhich we recall that converges for allqPR+d is always smaller than the convergence radii
of the sine and cosine series, which are in fact infinite.

In this way, one arrives at an expectation value of the regulated commutator that is equal to an
integral over the intervalkP f0,Lkg of the series of functionsopfpskuR1,R2,td, with

fpskuR1,R2,td ª J0sR1kdJ0sR2kds− 4GkdpFpskR1td. s28d

Since the functionsfpskd are clearly continuous inkP f0,Lkg sfor all allowed values ofR1, R2, and
td and this interval is compact, they are all integrable in that region. As a consequence, it is
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sufficient that the considered series of functions converges uniformly inkP f0,Lkg to guarantee
that the integration can be interchanged with the infinite sum. We will postpone to the next section
the proof of this uniform convergence, at least for a convenient choice of the cutoff.

In conclusion, we have seen that the field commutatorin vacuo, regulated with asdimension-
fuld fixed cutoff, can be expanded as a power series in the gravitational constantG, each term in
the series being finite. Besides, all the manipulations performed to deduce this series are rigorously
justified provided that the cutoff is chosen so that the seriesopfpskuR1,R2,td converges uniformly
in kP f0,Lkg. Furthermore, in fact, this requirement of uniform convergence automatically ensures
that the corresponding integrated power seriess26d converges, and that it does so to the actual
value of the expectation value of the regulated commutator.

VII. UNIFORM CONVERGENCE

We want to demonstrate that there exists a nonzero value of the cutoff for which the series
opfpskuR1,R2,td converges uniformly inkP f0,Lkg for any fixed non-negative value ofR1, R2,
and t. Let us start by finding a convenient upper bound for the coefficientsapfmg, with mù1,
defined ins24d. First, note thatapfmg=0 unlesspùm, because no set of the formsspumd exists
with ni ù1 if oi=1

m ni =p,m. In addition, sincesni +1d! ù2 for ni ù1, we have that

apfmg ø
1

2m o
sspumd

1. s29d

From our definitions25d, the last sum equals the different ways to arrangep−m nondistin-
guishable elementsfnamely, the excess about its minimum of the sum ofm elementsni ù1, which
equalsp−m for sspumdg betweenm different setsswhich correspond to them integersnid. The
result is given by the permutations ofsp−md+m−1 elementssthe latterm−1 elements represent-
ing movable delimiters between them setsd with possible repetition inp−m sthe genuine, non-
distinguishable elementsd and inm−1 sthe imaginary delimitersd. Thus,

apfmg ø
1

2m

sp − 1d!
sp − md!sm− 1d!

ø
1

2m

p!

sp − md!
. s30d

In the last inequality we have employed thatsm−1d!pù1 for all pùmù1.
Using that the absolute value of the sine and the cosine is never greater than the unity, it is not

difficult then to deduce froms27d the following bound forFpskR1td, with pù1:

uFpskR1tdu ø o
m=1

p
kmR1tm

m!
apfmg ø o

m=1

p SkR1t

2
DmSp

m
D = S1 +

kR1t

2
Dp

− 1. s31d

In the last step, we have employed the formula of the binomial expansion. Likewise, since the
zeroth-order Bessel function is bounded by the unity in the positive real axis, we get that, for all
non-negative values ofR1 andR2,

ufpskuR1,R2,tdu ø s4GkdpFS1 +
kR1t

2
Dp

− 1G ø F4GkS1 +
kR1t

2
DGp

. s32d

The last inequality is trivial, given that 4Gkù0. Note also that the bound on the rhs is valid even
in the casep=0, taking into accounts28d.

Finally, since 4Gks1+kR1t /2d is a strictly increasing function ofk in f0,Lkg, we obtain a
bound independent of the variablek in the interval considered:

ufpskuR1,R2,tdu ø F4GLkS1 +
LkR1t

2
DGp

. s33d

To obtain the desired convergence properties, it will suffice to require that
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4GLkS1 +
LkR1t

2
D , 1. s34d

We then get that bothufpskuR1,R2,tdu and its integral overf0,Lkg are small corrections for large
p, which tend to zero in the limitp→`.

In order to prove the uniform convergence of the seriesopfpskuR1,R2,td, we have to check
that, for eache.0, there exists an integerP such that, for everykP f0,Lkg,

Uo
p=P

`

fpskuR1,R2,tdU ø e. s35d

Taking into account inequalitys34d, it is clear that, givene.0, we can always find a sufficiently
large integerP for which

F4GLkS1 +
LkR1t

2
DGP

, eF1 − 4GLkS1 +
LkR1t

2
DG . s36d

Note that the choice of thisP depends only on the values ofe, Lk, G, andR1t. Usings33d, we then
have

Uo
p=P

`

fpskuR1,R2,tdU ø o
p=P

` F4GLkS1 +
LkR1t

2
DGp

=
f4GLks1 + LkR1t/2dgP

1 − 4GLks1 + LkR1t/2d
ø e.

So, inequalitys35d is valid for all k in the considered intervalf0,Lkg, as we wanted to prove.
We have thus shown that, for a givent, every choice of the cutoffLk.0 that satisfies

conditions34d leads to a convergent power series in the gravitational constantG for the expecta-
tion vacuum of the regulated commutator, regardless of the radial coordinatesR1 andR2. More-
over, the power expansion converges indeed to the true value of this regulated commutatorin
vacuo.

VIII. CONCLUSIONS AND COMMENTS

We have studied in this paper the issue of microcausality for quantum Einstein-Rosen waves
after a suitable cutoff is introduced to regulate the quantum fields. In more detail, we have
considered the introduction of a momentum cutoffLk sor its dimensionless counterpartLqd. We
have discussed first the asymptotic expansions in terms of the dimensionless parametersr, t, and
l along the lines of Ref. 8. Owing to the fact that these parameters are defined with the help ofR1,
in principle one does not need to make explicit the dependence of the cutoffLk on G in this case.
On physical grounds, one could view this cutoff, for example, as the inverse of the Planck length.

We have seen that the introduction of a finite cutoff modifies some of the conclusions obtained
in Ref. 8. In particular we have seen that some of the most dramatic effects present when the
cutoff is infinitesin particular the behavior of the field commutators in the symmetry axisd are now
somewhat mitigated. Nevertheless, we have been able to show that the approximation provided by
the unregulated field commutator is a good one in some regions of thesr ,td plane, and, in fact,
there is an unbounded region where that approximation prevails. This indicates that, even though
the influence of the cutoff is felt in some regions of the parameter space, it is irrelevant in others.

In Secs. VI and VII, on the other hand, we have considered the expansion of the field
commutator in terms of the gravitational constantG. We notice, nonetheless, that conditions34d
on the cutoffLk, which guarantees the convergence of the series, depends onG. At this stage, one
possibility would be to admit that the cutoff depends on the gravitational constant; however, the
expansion obtained would then fail to provide a genuine power series inG, because this parameter
would also enter the different terms in the series via the implicit dependence ofLk on it. Another
possibility that indeed respects the interpretation of our expansion as a power series inG is the
following. Employing that conditions34d is an inequality equation forLk given in terms of a
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function ofG that is strictly increasing, it is easy to see that the inequality is satisfied for all values
of G in a certain intervalf0,GMg if and only if it is satisfied forGM. Something similar happens
with respect to the dependence on the value ofR1t= ut2− t1u, so that if we want to consider a whole
time interval of the formut2− t1uP f0,tMg, we only have to evaluate our condition at the maximum
time lapse. In other words, to ensure the convergence of the series forGP f0,GMg and any time
difference inf0,tMg, we only have to demand the requirements34d at G=GM andR1t= tM, because
then

4GLkS1 +
LkR1t

2
D , 4GMLkS1 +

LktM
2

D , 1. s37d

In this way we arrive at a cutoff that is independent of the particular values considered for
ut2− t1u and the gravitational constantsin the commented intervalsd, and our expansion becomes a
true power series inG. The above inequality leads to the following positive upper bound forLk:

Lk ø
1

tM
SÎ1 +

tM
2GM

− 1D . s38d

Therefore, with a cutoff that satisfies this condition, the power seriess26d converges in the interval
f0,GMg for all radial positionsR1 andR2 andR1t= ut2− t1uP f0,tMg.

WhentM is small, the bound onLk is approximately 1/s4GMd, whereas for largetM it is nearly
equal to 1/Î2GMtM. In particular, with this bound the cutoff would have to be vanishingly small
if we want a good convergent behavior in an infinitely large time intervalstM→`d. An open
question is whether it is possible or not to find a different, nonzero time-independent cutoff such
that the expansion of the regulated commutator converges for any value of the time elapsed, i.e.,
for all ut2− t1uPR+. We expect to encounter convergence problems when the time interval is
unbounded; for instance, one can prove that the seriess26d does not converge uniformly int
PR+ with any choice of the cutoffLk sfor genericR1 and R2d. Nonetheless, one can in fact
consider a kind of semi-classical limit in whichGM tends to zerosand hence so does the value of
the gravitational constant, which had been restricted tof0,GMgd, while the time interval where the
convergence is granted reaches infinity.

In order to do this, one only needs to allow a dependence oftM on GM, so that the assumed
maximum value of the time difference varies with that of the gravitational constant. Suppose, let
us say, thattMsGMd=GM

−a with 0,a,1. Then, the bounds38d on the cutoff becomes

Lk ø GM
a SÎ1 +

1

2GM
sa+1d − 1D . s39d

Thus, whenGM tends to zero, we get the asymptotic behaviorLkøGM
sa−1d/2/Î2. SinceGM

sa−1d/2 and
GM

−a diverge for vanishingGM, because 0,a,1, we therefore conclude that the cutoff can be
removed in the limitGM→0 while ensuring that the time intervalf0,tMsGMdg, where the expan-
sion is well defined, covers the positive real axis.

We finally discuss the physical interpretation of this type of cutoff. It turns out to be intimately
related to the maximum resolution that can be reached for the physical time when a certain
perturbative approach is adopted to describe the quantum dynamics.27 In such an approach, one
expands the evolution generator in powers ofG and regards the free-field Hamiltonian as the
dominant contribution, with the higher powers seen as corrections. The auxiliary timeT, associ-
ated with the free-field Hamiltonian, then plays the role of evolution parameter in the quantum
theory, whereas the physical time becomes an operator. It was shown in Ref. 27 that, under these
circumstances, a resolution limitDt emerges for the physical time,

fDtg2 ù 4G2 + 4GT. s40d

Employing the inequalityÎ1+xøx/ sÎ1+x−1d for x.0, evaluated atx= tM / s2Gd, one can
easily check from conditions38d that the inverse of the cutoff satisfies
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Lk
−1 ù Î4GM

2 + 2GMtM . s41d

Therefore, the bound onLk
−1 equals that on the time resolutionDt for a valueG=GM of the

gravitational constant and a time elapsedT=2tM sand thus of the same order astMd. In this sense,
one can assign toLk

−1 the interpretation of a genuine resolution limit in the physical time.
The future prospects for this line of work will focus on the issue of deriving and obtaining

meaningful physical information from theS matrix of the model. We feel that the mathematical
techniques employed here to study the asymptotics of field commutators, with and without a
cutoff, will also be helpful in analyzing this issue. We plan to concentrate on this problem in the
future.
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