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We discuss the asymptotic behavior of regulated field commutators for linearly
polarized, cylindrically symmetric gravitational waves and the mathematical tech-
niques needed for this analysis. We concentrate our attention on the effects brought
about by the introduction of a physical cutoff in the study of the microcausality of
the model and describe how the different physically relevant regimes are affected
by its presence. Specifically we discuss how genuine quantum gravity effects can
be disentangled from those originating in the introduction of a regulat®0@b
American Institute of Physic$DOI: 10.1063/1.1864251

I. INTRODUCTION

Linearly polarized cylindrical waves, also known as Einstein-Rosen we/emvide a sym-
metry reduction of general relativity that can be used as a test bed for the quantization of the
theory. This system displays several interesting features that contribute to its relevance. On one
hand, it has an infinite number of local degrees of freedom and, hence, it is a genuine quantum
field theory(in contradistinction to other symmetry reductions, such as Bianchi models, that have
a finite number of global degrees of freedo®n the other, the system is tractable both classically
and quantum mechanically, thus allowing us to derive exact consequences independent of any
approximation schem&® The main reason behind this success and tractability is the fact that the
gravitational degrees of freedom of the model are encoded in a free, massless, axially symmetric,
scalar field that evolves in an auxiliary Minkowskian background.

In previous papers we have analyzed the issue of microcausality in this system; in particular,
we have studied in detail the smearing of light cones owing to the quantization of the gravitational
field.”® The main tool for this type of analysis is the stunly vacuo of the field commutator
evaluated at different space—time points. As is well known, the commutator of quantum fields
reflects the causal structure of space—tifiMinkowskian space—time in ordinary perturbative
guantum field theornyin the sense that the quantum fields in spatially separated space—time points
commute. This is true for all standard types of quantum fields, i.e., scalar, fermion, or vector fields,
though issues related to gauge invariance must be carefully considered in this last case. In the
specific model that we are interested in, gauge invariance has been discussed in Ref. 9. The
authors of that paper conclude that it is correct to use the Ashtekar-Pierri gauge fixed action,
written in terms of the axially symmetric scalar field, to derive gauge invariant information about
the model.
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In a recent work we discussed the situation when no cutoff is introduced in the system,
studying the unregulated commutator. The main results reached were the following. First, one can
clearly see that light cones are smeared by quantum gravity effects; in fact it is possible to obtain
a quantitative measure of this smearing and show how sharp light cones are recovered in the limit
of large distances as compared to the natural length scale of the model, the Planck length. It is also
interesting to point out that the asymptotic behavior of the commutator in the different physically
relevant regimes strongly depends on the causal relationship between the different space—time
points involved. Second, one finds a singularity structure in the commutator that differs from that
of the free theory; in particular, the field commutator for equal values of the radial coor@isite
singular. Finally, one observes that, in the case when one of the space—time points that appear in
the commutator corresponds to the symmetry axis, there are quantum effects that persist for large
values of the difference of the time coordinates. This effect is reminiscent of the large quantum
gravity effects first discussed by AshteR&r%*

The purpose of this paper is to study how the conclusions of Ref. 8 are changed by the
introduction of a cutoff. As is well known, regulators are generally necessary in order to have
well-defined quantum field theories. One can justify its use, for example, by noticing that the
action of the field operator on the vacuum in a Fock space is not a vector in the Hilbert space
because it has infinite norm. In order to have a well-defined action of the field operator one
regulates it by introducing smearing functions that render the norms of these states finite. The
problem then consists in removing these regulatorsather showing that the physical results are
independent of thejn

In principle, it is possible to argue that the results derived in the absence of regulators
somehow approximate those derived after their introduction; this is straightforward to see in the
case of cutoffs. In the presence of a cutaffthe improper integrals that define the field commu-
tator become proper because the integration region is a closed irft@mgl For a given value of
the parameters that appear in the integi@lolving the values of the space—time coordinates of
the quantum fields and the gravitational constaints always possible to choose a value for
such that the integral with the cutoff is well approximated by the integral extended] 9.

Of course it is conceivable that the cutoff is not just a mathematical device but rather a
physical scale defining a fundamental limit for the resolution of our measurements. If space-time
becomes discrete at short distantgsch as the Planck lengththe continuum space—time picture
breaks down and, certainly, it would be difficult to justify the extension of the integrals involved
in the definition of field commutator®r S matrix elements, for that matdeto infinite intervals in
momenta(inverse length Our point of view here is that the introduction of a cutoff can mimic
some of the effects appearing after a successful quantization of gttositgxample, in the loop
guantum gravity approaghand hence we plan to study its effect within the consistent framework
provided by the Einstein-Rosen waves. It is also interesting to point out here that the cutoff by
itself can produce some of the effects expected from quantum gravity. In particular, it is possible
to show that light cones are also smeared by cutbffa. our opinion this makes it necessary to
study in detail how the effects of the cutoff and quantum gravity can be disentangled.

The paper is organized as follows. After this introduction, we briefly review the main results
about microcausality in quantum cylindrical gravitational waves and introduce the commutators
that we will discuss in the rest of the paper. We will then study the field commutators in the
presence of a cutoff with the help of the asymptotic techniques already employed in Ref. 8. Here
the situation is simpler because we will only have to consider integrals over closed intervals. We
will discuss one by one the asymptotic behaviors in the different parameters involved. In Sec. VI
we will derive a power series expansion in the gravitational constant for the commutator in the
presence of a cutoff in the spirit of ordinary perturbative quantum field theory, and discuss the
uniform convergence of this series under appropriate conditions on the cutoff in Sec. VII. We end
the paper with a discussion of our results and our conclusions.
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Il. THE FIELD COMMUTATOR

Einstein-Rosen waves describe topologically trivial space—-times with two linearly indepen-
dent, commuting, spacelike, and hypersurface orthogonal Killing vector ffetdendowed with
a metric that can be written as

ds?=e" (- dT?+ dR) + e YR*d¢” + e/d Z°. (1)

Here we use the coordinaté$,R,0,2), Te R, Re[0,%), [0,27), Ze R, and ¢ and y are
functions only ofR andT. The Einstein field equations are very simple. The scalar fleddtisfies
the wave equation for a massless, axially symmetric scalar field in three dimensions,

1
Fip= Grip = SRy =0,

and the functiony can be expressed in terms of this ffelchs

R
R = [ aRRG G (7).
0

We will use in the following a system of units such tleatZ=1 and defineG=7%G3, whereG;
denotes the gravitational constant per unit length in the direction of the symmetry’ &tis.
function y(R) (apart from a factor of 8) has a simple physical interpretation: it is the energy of
the scalar field in a ball of radiuR whereasy,, denotes lim_.,y(R) (the energy of the whole
two-dimensional flat spagelt is also possible to shot that y../(8G) coincides with the Hamil-
tonianH, of the system obtained by a linearization of the meftic

In order to have a unit asymptotic timelike Killing vector and a physical notion of ern@eyy
unit length we introduce the coordinatés R, 6,Z) defined byT=e */. In these coordinates the
metric takes the forfr>

ds = e" ¥(- e 7=dt? + dRP) + e YR?d¢? + e’d Z°.

By taking a sufficiently fast fall-off fory as R— oo, this metric describes asymptotically flat
cylindrical space—times such thatis a unit timelike Killing vector in the asymptotic region. In
the 2+1-dimensional framework these space—times are asymptotically flat at spacelike and null
infinities*>*° (the appropriate introduction of null infinity will be needed in order to studyShe
matrix of the model It is also worthwhile noting that these space—times have a nonzero deficit
angle.

The Einstein field equations can be obtained from a Hamiltonian action prifdipiéA
remarkablgand useful feature of the physical Hamiltoniaf (associated with the physical time
t) is the fact that it is a function of the Hamiltonian corresponding to the free scalar Higid,

1

H=E(Ho) =
(Ho) =

(1 -e46Ho),

In terms of theT-time and imposing regularity at the a®= 0%, the classical solutions for the
field ¢ can be written as

YRT)= \"Efo dkH(RR[AK)E™ T+ AT(k)e T],
0

whereA(k) and its complex conjugata’(k) are fixed by the initial conditions. The free Hamil-
tonianH, can be written now as
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Doy = ) \
o =Ho fo dkkAT(KIA(K).

Using this expression, we obtain thevolution of the field

2

l,/lE(R,t) — \”EI dk\-b(Rk)[A(k)e—ikte'Yx +AT(k)eikte_y°‘/2]_
0
The quantization can be carried out in the usual way by introducing a Fock space where
#(R,0), the quantum counterpart gi(R,0), is the operator-valued distributibhgiven by

©

W(R,0;A =) = (R, 0;A =) = 4G f dkB(RK[A(K) + AT(K)]. 2
0

Its action on Fock space is determined by thosé&(dad) andAT(k), the annihilation and creation

operators, with nonvanishing commutators given[ﬁwl),A*(kz)]:é(kl,kz).

We can regulate the field by introducing suitable functigflg that render finite the norms of
the states obtained by acting with the quantum field on Fock space vectors. In the following we
will make the simplest choicg(k) = xjo,4,j(K) (herex, ) denotes the characteristic function of the
interval[a,b]). By doing this the integration region i) becomes compact and we have

R - — (& R N
#(R,0) = (R, 0) = V4G f dk(RR[AK) +AT(K)]. 3
0
Evolution inT is given by the unitary operat@fﬂO(T):exq—iTl:io), where

Ho = f ’ dkKAT(K)A(K)
0

is the quantum Hamiltonian operator of a three-dimensional, axially symmetric scalar field. The
cutoff-regulated quantum scalar field in the Heisenberg picture is hence given by

Ak R ) R )
HRT)=UYMUR 0)Uy(T) = 4G f dkB(RR[AK)E T + AT(k)ekT].
0

If we describe the evolution in our model in terms of the physical tintiee quantum Hamiltonian
is H=E(Ho) =(1-€e%C"0)/(4G) and unitary evolution is given by (t) =exp—itH). With this time
evolution the annihilation and creation operators in the Heisenberg picture are

Ac(k,t) = UTOAKR D) = exp— ItE(K)e “CHIAK),

ALk ) = Al(K exitE (ke CHo],

where E(k)=(1-e7%%4/(4G), and the regulated field operator evolved with the physical Hamil-
tonian[that we denote agg(R,t)] is given by

Ak . R
TR0 = 4G f Ak (RRTAL(K,D + ALk )]
0

The field commutato[zAﬂE(Rl,tl) , pr(Rz,tz)] can be computed from these expressibince we
are dealing with an effectively interacting theory this operator is not proportional to the identity in
the Fock space basis that we are using and, hence, we have to consider its matrix elements. As in
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previous work we will concentrate on the vacuum expectation value. If a cAtaf introduced,
this is given by

_<0|[¢E(R1,t1) P Ro,t2)]|0) = f koo(le)Jo(Rzk)Sln{ 4G1(1‘e_46k)] (4)

which can be seen to depend on the time coordinates only through their diffégetigevhich we
will assume in the following to be positive. Notice that it depends symmetricalliR,0and R,.
The functional dependence @Giis less trivial, a fact that requires special attention when studying
the limit in which the relevant lengths and time differences are much larger than the Planck
Iengthf3

It is convenient to refer the dimensional parameters of these integrals to another length scale,
which we choose aR;. We hence introducB,=pR;, t,—t;=R;7, andA =R;/4G and rewrite(4) as

0

A
.i<0|[¢E(R11t1)a¢E(R2:t2)]|0>:ATJ f qquo()\Q)Jo(P}\Q)eiT}‘(l_e_q) (5
8iG Ry

after introducing the new variable=q/(4G). HereJ denotes the imaginary part ang,=4GA,.
Physically, the cutoff\, (which in principle has the dimensionality of an inverse lengthuld

be interpreted as having its origin in the existence of a minimum length. This comes out naturally

in loop quantum gravity where space is discrete and the area and volume operators have minimum

eigenvalues of the order of the Planck area and volume, respectively. In fact, the existence of a

minimum length(of the size of the Planck scalean be considered a generic feature of essentially

every quantum theor’;}. The interpretation of the adimensional cutdff would follow from that

of Ay, so it may be reasonable to expect that it be a number of order unity; nevertheless we will

treat it as a free parameter in the following.

Ill. ASYMPTOTIC BEHAVIOR IN p

Let us start by considering the behavior @ when the parametes grows to infinite or
approachee=0. This integral can be written as a standarttansfornf? by the change of vari-
ablest=g\. The most convenient way to get its asymptotic behavigr-in is by rewriting it in
the form

1 [ ) ~ o0 ) B
53{ j dtJy(pt) Jo(t)e AE™ — f dtdo(pt) Jo(t)g ™ 1-e >} 6)
1 0 RiAk

One can then use the asymptotic behavior obtained for the first integral in Ref. 8, and find the
asymptotics of the second integral by standard integration by pamgloying the fact that
Jo(k)==J5(k) /' k=J(k)]. By doing this one gets the following two contributions:

1[ . 1(97 3r 972)] (1)
— + —-— +0| =,
Ryl 2np° BN 8\ 2\ p’

1 AR 1
?3[31(AkR1P)JO(AkR1)eITMl e+ O(T/z)
pRy p

The first one is cutoff independent but subdominant with respect to the second, hence we see
that the presence of a cutoff changes the asymptotic behavoiTinis is the kind of behavior that
one would expect even in a Lorentz covariant theory after the introduction of a cutoff because of
the breaking of the Lorentz symmetry. The novel feature here is the presence of cutoff independent
terms. Although the cutoff-dependent one dominates in the asymptotic limit, there may be a
transient regime, whose onset will be controlled by the value\gfin which the asymptotic
behavior is given by the first term. This will be most evident whigs— oo.
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In the p— 0 limit we get

1 (Pai : ~tx A _ [P - -q
aa] amen e som = 2o [ Maanaentsop, @
R]_ 0 Rl 0

as a result of the continuity @at=0 of the integral defining the commutat().

IV. ASYMPTOTIC BEHAVIOR IN 7

The integral in(5) has the convenient form of drtransform and, hence, it can be studied by
standard Mellin transform methodsf the asymptotic parameter is chosen todyédnowever, this
is no longer true if the asymptotic parameter is taken tarlo@hich corresponds to considering
large separations in the time coordinatéghis fact introduces some mathematical difficulties in
the asymptotic analysis. In this case one has to consider the gafeandp # 0 separately.

If p=0, one finds that the asymptotic behavior when o« without the cutoff is given b?/

i A 3 gll(ma)+ma-x Iog(r)\)]e(wIZ))\F(i)\) + g7il(m4) =N log(\)]g=(m2)Np(— N} + O( 1 ) ,
R, ¥V 2wlog log 7
(8)
whereas fop# 0 we get
1r LD+ ANL oY N TNLDITiN (1 + p)]

2mR\Vplog T

+ e—i[(71'/2)—7')\—)\(1+p)IOg(f)\)]e—(77'/2)}\(1+p)l-*[_ I)\(l +p)]

+ ei[T)\—}\(1—p)|og(7)\)]e(77/2))\(l—p)l"[i)\(1 _ p)]

: , 1
+ el[T}\—}\(p—].)'Og(T)\)]e('ﬁ/z))\(p—l)l“[l)\(p _ 1)]} + O( (log T)2> ] (9)

The most interesting feature of these expressions is their unusual dependence on the asymptotic
parameterr; in fact, the dependence on inverse powers of logarittespecially on the inverse
square root of log) cannot be obtained by direct application of the usual asymptotic expressions
derived by Mellin transform techniquéSt is also remarkable how slowly the commutator decays
in 7, in particular in the axip=0, a fact that is suggestive of the large quantum gravity effects
discussed by Ashtek&Outside the axis the decay is faster but still quite slow. A consequence of
the different asymptotic behaviors ifor p=0 andp # 0 is the impossibility to recoveiB) as the
limit when p—0 of (9). As we can see, the frequency of the oscillations of the commutater in
is controlled byx (proportional to the inverse @) in such a way that although the amplitude of
the oscillations decays very slowly, they will average to zero on scales larger than the Planck
length.

When we introduce a cutofk,, the above asymptotic expressions change to

15{ l[l _ ei r>\(1—e-AkR1/>\)eAlelio(Ale)Jo(pAle)]} + O( l) , (10)
Rl T 7'2

valid both for p=0 andp+# 0. This can be obtained by straightforward integration by parts. An
interesting situation develops at this point because the asymptotic behavior of the integral in
behaves in a discontinuous way in the cutoff. In the analysis carried out to study the asymptotic
behavior inp we found out that the cutoff-dependent term, in spite of being dominant, goes to zero
in the limit A, —cc. Here the situation is different: taking naty,— <0 in (10) does not lead to the
asymptotic expressions corresponding\ig=c. That is, the asymptotic behavior of the improper
integral in (4) is not the limit whenA,— « of (5). As in the case of the asymptotics jn one
expects that there must be a transient regime in which the behaviarfi(b) is given by(8) and
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(9). We will not consider here a precise characterization of this transient behavior for arbitrary
values of the relevant parameters because its main properties can be conveniently discussed, at
least for large\, by looking at thex — oo asymptotics of the commutator in tlig, 7) plane.

The 7— 0 limit is easy to analyze. In fact what we find, both with and without the cutoff, is
that the series obtained by expandiaeig\(l‘e in powers ofe™'*, exchanging integration and
infinite sum, and computing the resulting integrals gives a series that converges to the value of the
commutator.

V. ASYMPTOTIC BEHAVIOR IN A

The asymptotic behavior iR is studied by following the procedure described in Ref. 8. It is
worth remarking that the limik — oo of the regulated field commutator cannot be identified with
that in which the gravitational consta@ vanishes if one admits that the dimensionful cutoff
A<« is kept constant in principle. On the contrary, the two limits could be considered equivalent
only under the assumption thaf, increases as the inverse®ffor small gravitational constant, so
that its dimensionless counterpat=4GA, may remain fixed.

The analysis of the asymptotics lnwhen the cutoff is present is simultaneously simpler in
some respects and more complicated in others compared with the case when no cutoff is intro-
duced. Itis simpler because the lengthy analysis needed to discuss the asymptotics of the improper
integral is not necessary now. It is more complicated in the sense that the final asymptotic expres-
sions contain additional terms and also because the number of regions with diffexgynptotic
regimes in the(p, 7) plane increases.

We have to consider now the cases0 andp+# 0 separately. Let us consider figgE0 and

write the rhs of(5) aé
|)\e'”‘
1

after using the usual integral representation for the Bessel fundljpfrs=0,1,..),

1 dt
Jn(z) — _f tn+le2/2 (t= l/'[)

wherey is a closed, positively oriented, simple path in the complex plane surrounding the origin.
Notice that we are integrating an integrable function in a compact region, so we can write the
integrals in any order we want. The asymptotic analysid.df can be carried out by following the
same steps as in Ref. 8. As we did there, it is useful to introduce neutralizers to split the integral
in three pieces;, j=1,2,3, ancchoose appropriate contours for each of them. These integrals are

iy al TN A
|j =3 - ire f ¢ dqé dtyj(q)}ex[(qlz)(t—llt)—im'q] '
27TR1 0 y t

where we have introduced the neutralizer functief(s)), j=1,2,3, satisfying v;+v,+v3=1 in
[0,A4] and

v(q)=1if q € [0,a4],
v(q) =0 if g € [ap Agl,
vo(q) =0 if q € [0,a1] U [B2, Ay,

v(q) =11if q € [az,B1],
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v3(@) =01if q e [0,8],

v3(@) =11if g e [B2Aq],

with 0<a; <a,<B;<B,<A, (these parameters are chosen as in RefB§ doing this the
effective integration regions ig are[0,a,], [a;, 8,], and[3;,A4] and the boundarg=0 appears
only in the first.

The asymptotics inn of the integrall, is best obtained by choosing an integration contour
satisfyingR(t—1/t) <0 (that passes necessarily through andt=-i). By using the same method
of Ref. 8 we see that the first two relevant terms are given by the contour integrals

1 ijg dt
RO\ eran-1]"

1 i 8i 7t?
- NTPdt—73 1,
2mR T | NS, (B 2int- 1)

whose sum gives

——forr>1
RiV7A -1
and
1+27
l ) for r< 1.

2R\ (1 - 7252

Although the second term will be subdominant with respect to some of the contributions coming
from |, andlj, it improves the approximation of the full commutator obtained from the asymp-
totics in\ in the regionr<<1.

The contribution ofl; to the asymptotics i\ is obtained from the contour integrétorre-
sponding to the boundary gt=A)

(]

iel™ 2(t— 1 +2i Te—Aq)e(qulz)(t—ln)—iTe*Aq
t_
27rF<13£y t AZ(t+ 102~ (t= 1t + 2ire Ma)?

The asymptotics in\ of this integral can be easily studied by using the method of steepest
descents. This gives

2iei T)\(l—e_AQ)
J ™ , i7e asin )\Aq—Z -co )\Aq—z :
Ry(7?e %M~ 1)V2m\A 4 4

Finally, the integrall, (for which we choose fory the curve|t|=1) only contributes when the
stationary points of the exponent are in the integration region. This happens only when 1
< eMa, The contribution to the first relevant order jnis®

1 ei)\(T—log 1)
3o
R]_ \leg T

Adding up the different terms we get
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p=20 G =0.02 Ay=2
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FIG. 1. Asymptotic approximation in for the field commutator overi as a function ofr for p=0, G=0.02, andA,

=2. We compare it both with a numerical computation of the integral that defines it and with the unregulated free
commutator. As we can see, the approximation is good except at the points where the asymptotic behavior(€hanges
=1 andr=etq). Notice the difference in the amplitude of the oscillations fere*a and 7> e,

7_(1 + 27_2) 1 1 ei)\(r—log 1)
l-1 =5+ 01— ) ———+ 07— - NI ———F——
D raa- e T VR T T D T I R g
2ieiT)\(l—e_’\Q)
+3 -~ : i7e asin )\Aq—Z -co )\Aq—Z : (12
Ry(7e 2 a=1)y2mAA, 4 4

where 6 denotes the step function.

We see that the final result consists of several contributions: the free commutator for an
infinite cutoff, a 1A correction forr<1, the term with the 1\(log 7 dependence for & 7<eq,
and a cutoff-dependent contribution for all valuesrahat fall off to zero whemA,— . If the
cutoff goes to infinity, the commutator can be approximated by the one obtained in Ref. 8;
however, if it is of order onéas would be the case if it is defined by the Planck lehgtien that
approximation is no longer valid. Notice that the valuesref(1,e*a) are those for which the
asymptotics provided by the unregulated commutator are a correct approximation. This is roughly
the transient region in the parameter mentioned in the previous subsection.

Figures 1-3 show the behavior of the field commut&wer 8G) whenp=0 as a function of
7 for several values ok . As we can see, the asymptotic approximation becomes singular between
regions with different asymptotic regimes, but approximates well the exact value of the commu-
tator (obtained by numerical method®r the remaining values of. Notice that the singularity at
r=eta of the asymptotic expansion lies outside the plotted region in Figs. 2 and 3.

In order to study they# 0 case we start by writing the rhs (8) as

i T\ A
Ae J qdq§ dtlé dtzie)\[(q)(tl—1/11)/2+pq(t2—1/t2)/2—iTe_q] (13)
0 71 v b

4R,

after employing the usual integral representation for the Bessel fundidns0,1,..). Again it
is helpful to introduce the same neutralizers as above to split the integral in three Rieces
=1,2,3.
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p=0 G=002 A,=4

i

FIG. 2. Asymptotic approximation in for the field commutator overi@ as a function ofr for p=0, G=0.02, andA,

=4 (compared both with a numerical computation of the integral that defines it and with the unregulated free commmutator
As we can see, the asymptotic approximation is good except At Notice that the cutoff introduces a modulation of the
amplitude in the region & r<e*a. The singularity of the asymptotic approximation mteta lies outside the plotted
region.

A Mnnwm f
i .

-1 L

The integrall; gives the following two contributions:

1 1
3\ —=— dt dt 14
J zﬂiRﬁgn 13%2 2ot (B- 1) + (€ + 27ty 1) 149
and
2iT 2’[2
dt . 15
R xfﬁ 13@ (@Dt + 2irt, - D (19

Both integrals can be computed exa%ﬁly terms of complete elliptic integrals of first and second
kinds. The first one gives the contribution of the unregulated free commutagqrwith infinite
cutoff).

In order to describe it we define regions I, I, and Il byx@<|p-1], |p-1]<7<p+1, and
p+1<r7, respectively. They are shown in Fig. 4. In region | the free commutator is zero, whereas
in regions Il and Il it is given by

region I,
1 -(p-1)7?
HK< [7?=(p )>,
mRVp 4p
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I
b—l
o

p=0 G = 0.02 A,

ﬂwnﬂw PRI
A

FIG. 3. Asymptotic approximation in for the field commutator overi@ as a function ofr for p=0, G=0.02, andA,

=10 (compared both with a numerical computation of the integral that defines it and with the unregulated free commuta-
tor). As we can see, the asymptotic approximation is good except it The asymptotic approximation obtained in Ref.

8 is good in a large region in theaxis. The singularity of the asymptotic approximatiorrag®a lies outside the plotted
region.

-1 L

region Il

A==
RN (L-pr \N 2= —pp)

The second contributiofil5) can be computed by the method outlined in Appendix IV of Ref. 8,
obtaining
region I,

T 2[1+p4+272—37'4+2p2(72—1)]\(1+p)2—72E(\/ 4p )
2R | (L+p- DAL -p+ D’ (- 1+p+DA(L+p+1)? (1+p)? -7

: & s a
[p*+ (P =12 - 20+ 2P N(A+p)° =2\ N L+p)?= 2] |

region 11,

T {1—2p2+p4+72—2p72+p272—274K( (l+p)2—7’2>
27RA (- Vpl(1=p)? = ZI(L +p)? = 2T 4p

Mp[1 - 207+ p*+ 277 = 374+ 2p277 ( \/m)
(P20 AP 4p ' 7

The value of(15) in region Il is zero.
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The integrall 3, on the other hand, can also be studied by the methods described in Ref. 8. The
first relevant term to its asymptotic expansion in inverse powebs isfderived from the double
contour integral

eif)\ 2 [tl l/t1+p(t2 l/tz) +2ire q]e)\[ (A, /2) t1=1/ty)+p(A, /2)(t2 1hty)-ire™ q]
J jg dtl§ dt 2
"1

4Ry titp AZ oLty + Lity)? + p?(tp + 1ip)%] = [ty = Lhy + p(ty = Ltp) + 2i 7€)
(18)

corresponding tg=A, and whose asymptotic behavior can be determined by employing standard
techniques for multlple mtegraf% In this way we obtain the following contribution:

1 {sir’{)\Aq(l +p) = AL -] siMAAG(L+p) + AL -e79)]

2R A p 1+p-reta L+p+reha
coi)\Aq(l p)— 7')\(1 ~Aq)] coi)\Aq(l p)+ r)\(l e )] (19
1-p—me™ 1-p+ e

Finally, the integral, is written in terms of a neutralizer that vanishegjad andgq=A. This
integral is best studied by choosing the unit circumference centered in the origin of the complex
plane as the integration contogt The contributions of this integral to the asymptotics(b8)
come from the stationary points of the exponent in the integrand whenever they are within the
integration region. This fact is controlled by the value of the cutgff The result is

{o(r—p+Dé(p-Dea-7]6(p- 1)

RiV2mhp|1 - pllog|1 - p|
o T4gIN T+ (p+D)(l0g1 /1)) }

e—i7-r/4ei)\[T+\p—1|(1+logfr/\p—1|)] }

+0(7+p=- 11 -p)eta- 761 —p)}fj{

+0(r—p—-1 +1eta-7]3
(r—p-DH(p+1) T]‘S{ R1V/27T)\p(1 +p)logr/l+p

where the step functions define the regions where the different stationary points contribute. As we
can see and it is explained in Fig. 5, there are two contributions in some parts (pf, theplane,

FIG. 4. Regions in thép, 7) plane used in the discussion of thesymptotics and the free commutator. Region | is defined
by 0< 7<|p—1], region Il by |p—1|<7<p+1, and region Ill byp+1<r.
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FIG. 5. Regions in thép, 7) plane used in the discussion of th@asymptotics in the presence of a cutaff=1. The label
of each region indicates how many critical points contribute to the asymptotic expansion in

only one in some other parts, and no contribution in the remaining ones. Notice that, whenever
they differ from zero, these contributions are dominant with respect to those coming from the
other integrals.

Several points are now in order. First it is interesting to realize that the singulagitylathat
exists when the cutoff is taken to be infin{@nd is obviously absent ngwhows up as the region
defined by the lineg=e'a(1-p), r=e*d(p-1), and r=eta(p+1) shrinks with growingA,. An-
other interesting feature of the commutator when the cutoff is present is the appearance of some
regions where the leading asymptotic behavior is not given by the expressions obtained in Ref. 8
for infinite cutoff, namely the regions with>|1—p| labeled 0 in Fig. 5 and the region labeled 1
that connects them. On the contrary, there are two regions where two stationary points contribute
to the asymptotics just as in the,— = case, showing the characteristic slow decay in the
direction?* Of these two regions, the one closer to the axis is bounded, whereas the second one
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G=002 A,=1 G=002 A,—4 G =002 A, =10

0 B0 1 leb 2 2.8 3 0 B 1 148 2 2.5 & 0 0.5 1 1:8 2 2.5 3
p p p

FIG. 6. Density plots of the commutator f&=0.02 and different values of,. Comparing the results with those of Ref.
8, we can see that the commutator in the regions labeled 2 in Fig. 4 is essentially equal to the one corresponding to an
infinite cutoff. Notice also the process by which the singularitiRagppears.

[defined by the lines=eta(p-1) and r=p+1] is not. The effect of the symmetry axis is evident
in the sense that it is precisely there where one of the lines that limits the boundary of this region
starts, namelyr=p+1.

As we can see, the influence of the cutoff is important in some parts dpth¢ plane, but
there are others where the asymptotic behavior is described at leadingspbyethe unregulated
N—oo limit. The consideration of these different regions helps in describing the intermediate
regimes where the infinite cutoff approximation is expected to work, at least for large valhes of
Finally, we want to point out that the most dramatic quantum effect observed when the cutoff is
infinite, the very slow falloff of the commutator at the axis in thdirection, is no longer present
after introducing a regulator. This casts some doubts about the “observability” of large quantum
gravitational fluctuations at the axis. These behaviors can be visually appreciated in Figs. 6-9.

VI. POWER EXPANSION IN G

In the above sections we have discussed the asymptotics of the regulated field commutator as
a function ofp, \, and . These are dimensionless parameters obtained by &irg a length
scale. We want to discuss now the possibility of expanding this commutator as a power series in
G. The main motivation to consider this issue is that one would expect to arrive at an expansion
of this kind when adopting a standard perturbative approach for the treatment of the problem. As
we will see, this can be done in a rather straightforward way if a cutoff is introduced in the system.
However, our description breaks down when the cutoff is removed.

Let us analyze then the expansion of the vacuum expectation value of the commutator in
powers of the quantum gravitational consfaiG=G. To this end we rewrité4) as
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FIG. 7. Asymptotic approximation in for the field commutator overi& as a function ofr for G=0.02,p=3, andA,
=1 compared with a numerical approximation. The regions with different asymptotic regimes are shown. The asymptotic
approximation is good except at the boundaries between these regions. The different types of behavior are also evident.
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FIG. 8. Asymptotic approximation in for the field commutator overi& as a function ofr for G=0.02, p=1.25, and
Aq=4 compared with a numerical approximation.
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FIG. 9. Asymptotic approximation in for the field commutator overi& as a function ofr for G=0.02,p=1.25, and
A4=10 compared with a numerical approximation.

(¢ _e_q)] . (20)

1 N N Ak
8._<0‘['//E(R1, t1), Ye(Ro,t2)1|0) = f dkJy(R1K)Jo( Rzk)Sin[ KRy7————
iG 0 q

With our conventions, botkR, 7 andq=Gk are dimensionless, wherelagan be regarded to have
dimensions of an inverse length. Note that all the dependencg isncontained ing, accepting
that the cutoffA, is fixed. Thus, in order to arrive at the desired series, we will expand the
integrand in powers of the variabtg At this point, it is worth remarking that, had we described
the regulated commutator by means of the dimensionless cgf4GA, as in previous
sections’® it would not have been possible to single out the dependence on the gravitational
constant via that ouq.

We will use the following formulas for the Taylor expansion of the functions involved in our
expression20) and the composition of the resulting series, assuming for the moment their con-

vergence:
_1-g-e%_& (-g"
g(q) = ; _E(nﬂ)!’ (21)
. _ « y2m « y2m+1
sin(kRy7+y) = sm(leT)mE:O (- 1) ot cos(leT)mE:O (-1 e D (22)
w@rr=| S CV LS agmi-or (23
(11 11 I ’

Downloaded 05 May 2009 to 161.111.22.69. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



062306-17  Asymptotics of regulated field commutators J. Math. Phys. 46, 062306 (2005)

m
aiml= 3 [T (29
where the range of the last sum extends to the sets iotegersn; given by
m
a(plm) := | n = 1;i§_‘1 n=p(. (25)

Interchanging the sum and integration orders, one then obtains the formal series

1 - ~ o[
%<0|[¢E(R1,t1), Ye(Ro,1p)]10) = > dkJ(RiK) Jo(RoK) (— 4AGK)PF (KR, 7) , (26)
p=0<0

with
int[p/2] (_ 1)m
Fo(kRy7) = Sin(kR7) W% ) ap[2m](kR 7)™
int[(p—1)/2] (_ )m
—_ = 2m+1 -
+ cogkR;7) nz,o ame D a2m+1](kR*™!, p=1,
Fo(kRy7) := sin(kR;7). (27

Here, the function ifik] is the integer part ok, and the sum ovem that multiplies the function
sin(kR,7) is understood to vanish whep=1. Note that, in the case of infinite cutoff, the first
(p=0) term reproduces the commutator of the free-field theory. Moreover, then afbthe
additions to the free field contribution are integrals oM@ye) of oscillating, nonbounded func-
tions and, hence, at best conditionally convergent. So, in the unregulated ttigery), the
above expansion should be taken only as a formal expression, and therefore we expect that the
corresponding vacuum expectation value of the field commutator is not anal\@c in

Of course these problems disappear when we admit the existence of a finite catdff O
<. Taking into account that all the functiofg(kR,7) are analytic ik around the positive real
axis, becausé, is a finite combination of products of analytic functions, and that so are the
zeroth-order Bessel functions that appear in the integral2®f it is easy to conclude that all
those integrals are well defined when they are restricted to a compact ifi@ngl. Thus, each
term in the power serie€6) is finite for any finite positive value oA,.

In the rest of this section, we will discuss the formal manipulations that we have carried out
with infinite sums in order to deduce the above expansion. First, notice that the Taylor series in
(21), which is obtained from that of the exponential function, has an infinite convergence radius.
When this series is substituted (20), one obtains a trigonometric function similar to that on the
Ihs of (22), but withy=kR;7g(q) expanded in powers @f. On the other hand, relatiq®2) is just
the formula for the sine of the sum of two angles, with the resulting functiong aimd cosy
replaced with their Taylor expansion. The series compositiorj&Rjng(q)] and cofkR;79(q)]
can then be rearranged without problems employind déq)]™ the value given in23) because
g(g) (which we recall that converges for @jle R*) is always smaller than the convergence radii
of the sine and cosine series, which are in fact infinite.

In this way, one arrives at an expectation value of the regulated commutator that is equal to an
integral over the intervak e [0,A,] of the series of function§pfp(k| R;,R,, 7), with

fp(k| Rll Rz, T) = Jo(le)Jo(Rzk)(_ 4G k)pr(leT) . (28)

Since the function$;(k) are clearly continuous ike [0,A,] (for all allowed values oR;, R, and
7) and this interval is compact, they are all integrable in that region. As a consequence, it is
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sufficient that the considered series of functions converges unifornmiysif0,A,] to guarantee
that the integration can be interchanged with the infinite sum. We will postpone to the next section
the proof of this uniform convergence, at least for a convenient choice of the cutoff.

In conclusion, we have seen that the field commutataacuq regulated with gdimension-
ful) fixed cutoff, can be expanded as a power series in the gravitational cofsteath term in
the series being finite. Besides, all the manipulations performed to deduce this series are rigorously
justified provided that the cutoff is chosen so that the s@gfg(k| R;,Ry, 7) converges uniformly
inke[0,A,]. Furthermore, in fact, this requirement of uniform convergence automatically ensures
that the corresponding integrated power se(28 converges, and that it does so to the actual
value of the expectation value of the regulated commutator.

VII. UNIFORM CONVERGENCE

We want to demonstrate that there exists a nonzero value of the cutoff for which the series
3,fo(k|Ry, Ry, 7) converges uniformly irk e [0,A,] for any fixed non-negative value &;, R,,
and 7. Let us start by finding a convenient upper bound for the coefficiagits], with m=1,
defined in(24). First, note thaa[m]=0 unlessp=m, because no set of the forer(p|m) exists
with n;=1 if =7;n;=p<m. In addition, sincen;+1)! =2 for n;=1, we have that

1
alml<_- > 1. (29
a(plm)

From our definition(25), the last sum equals the different ways to arrapgen nondistin-
guishable elemenf{mamely, the excess about its minimum of the sutmalementsy; = 1, which
equalsp—m for o(p|m)] betweenm different sets(which correspond to then integersn;). The
result is given by the permutations @@—m)+m-1 elementgthe latterm—1 elements represent-
ing movable delimiters between time set$ with possible repetition irp—m (the genuine, non-
distinguishable elementsind inm-1 (the imaginary delimiteps Thus,

1 -t 1 p
2"(p-m!(m-1! 2" (p-m)!’

a[m] < (30)
In the last inequality we have employed thai—1)!p=1 for all p=m=1.

Using that the absolute value of the sine and the cosine is never greater than the unity, it is not
difficult then to deduce fronf27) the following bound forF(kR;7), with p=1:

P m p m
IFp(kRy7)| < > K R17map[m] <> (@) (r:) = <1+%>p— 1. (31

m1 M me1\ 2

In the last step, we have employed the formula of the binomial expansion. Likewise, since the
zeroth-order Bessel function is bounded by the unity in the positive real axis, we get that, for all
non-negative values d®; andR,,

|f3(KRy, Ry, )| < (4Gk)p[<1 + k%ﬂ)p - 1} < {4Gk<1 + k%ﬂ)}p. (32)

The last inequality is trivial, given that@k=0. Note also that the bound on the rhs is valid even
in the casg=0, taking into accoun(28).

Finally, since 6k(1+kR;7/2) is a strictly increasing function of in [0,A,], we obtain a
bound independent of the varialiten the interval considered:

AR P
|fo(kIR, Ry, 7)| < [4GAk<1 + leT)} . (33

To obtain the desired convergence properties, it will suffice to require that
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AR
4GA [ 1+ 22T ) <1 (34)
2

We then get that both‘p(k| R;,R,,7)| and its integral ovef0,A,] are small corrections for large
p, which tend to zero in the limip— oce.

In order to prove the uniform convergence of the seEgs)(k| R:,R,,7), we have to check
that, for eache>0, there exists an integét such that, for everk e [0,A,],

> (KR, Ry 7 | <e. (35)
p=P

Taking into account inequalit{34), it is clear that, givere>0, we can always find a sufficiently
large integerP for which

AR T |P AR
{4GAK(1+leT>] < 6[1—4GAK<1+'(TN)} (36)
Note that the choice of thiB depends only on the values gfA,, G, andR; 7. Using(33), we then
have
- - Aler> ] P [4GA (L +AR72)]P
f (kIR, Ry, < AGA | 1+ = ES
gp o(KRuRe 7 pz:‘: { k( 2 1-4GA(L+AR ) ©

So, inequality(35) is valid for all k in the considered intervgD,A,], as we wanted to prove.

We have thus shown that, for a given every choice of the cutoff\,>0 that satisfies
condition(34) leads to a convergent power series in the gravitational con&tdot the expecta-
tion vacuum of the regulated commutator, regardless of the radial coordiRatesd R,. More-
over, the power expansion converges indeed to the true value of this regulated comimutator
vacua

VIIl. CONCLUSIONS AND COMMENTS

We have studied in this paper the issue of microcausality for quantum Einstein-Rosen waves
after a suitable cutoff is introduced to regulate the quantum fields. In more detail, we have
considered the introduction of a momentum cutdff (or its dimensionless counterpak,). We
have discussed first the asymptotic expansions in terms of the dimensionless parametensl
\ along the lines of Ref. 8. Owing to the fact that these parameters are defined with the Rglp of
in principle one does not need to make explicit the dependence of the dytoff G in this case.

On physical grounds, one could view this cutoff, for example, as the inverse of the Planck length.

We have seen that the introduction of a finite cutoff modifies some of the conclusions obtained
in Ref. 8. In particular we have seen that some of the most dramatic effects present when the
cutoff is infinite (in particular the behavior of the field commutators in the symmetry) axesnow
somewhat mitigated. Nevertheless, we have been able to show that the approximation provided by
the unregulated field commutator is a good one in some regions @pthg plane, and, in fact,
there is an unbounded region where that approximation prevails. This indicates that, even though
the influence of the cutoff is felt in some regions of the parameter space, it is irrelevant in others.

In Secs. VI and VII, on the other hand, we have considered the expansion of the field
commutator in terms of the gravitational const@tWe notice, nonetheless, that conditi(3%)
on the cutoffA,, which guarantees the convergence of the series, deper@sAtrthis stage, one
possibility would be to admit that the cutoff depends on the gravitational constant; however, the
expansion obtained would then fail to provide a genuine power seri@sbecause this parameter
would also enter the different terms in the series via the implicit dependentgaf it. Another
possibility that indeed respects the interpretation of our expansion as a power sdgas ihe
following. Employing that condition(34) is an inequality equation fo\, given in terms of a
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function of G that is strictly increasing, it is easy to see that the inequality is satisfied for all values
of G in a certain interval0,Gy] if and only if it is satisfied forGy. Something similar happens
with respect to the dependence on the valuBef=|t,—t,|, so that if we want to consider a whole
time interval of the fornjt,—t;| € [0,ty], we only have to evaluate our condition at the maximum
time lapse. In other words, to ensure the convergence of the seri&<p0,G,, ] and any time
difference in[0,ty], we only have to demand the requiremé¥) at G=G,, andR; 7=t),, because
then

AleT

Ayt
4GAk(1 + ) < 4GMAk(1 + k2M> <1. (37)
In this way we arrive at a cutoff that is independent of the particular values considered for
[t,—t,| and the gravitational constafih the commented intervalsand our expansion becomes a
true power series is. The above inequality leads to the following positive upper bound\for

1 [ty
A< — 1+——1>. 38
k tM( 2G,, (38)

Therefore, with a cutoff that satisfies this condition, the power sé€2@sconverges in the interval
[0,Gy] for all radial positionsR; andR, and R, 7=|t,—t;| € [0,ty;].

Whenty, is small, the bound o\ is approximately 1(4G,), whereas for largg, it is nearly
equal to 1/\5'ZGMtM. In particular, with this bound the cutoff would have to be vanishingly small
if we want a good convergent behavior in an infinitely large time inteftgl— ). An open
question is whether it is possible or not to find a different, nonzero time-independent cutoff such
that the expansion of the regulated commutator converges for any value of the time elapsed, i.e.,
for all |t,—t;] e R*. We expect to encounter convergence problems when the time interval is
unbounded; for instance, one can prove that the séB@sdoes not converge uniformly im
e R* with any choice of the cutoffA, (for genericR; and R,). Nonetheless, one can in fact
consider a kind of semi-classical limit in whi¢hy, tends to zerdand hence so does the value of
the gravitational constant, which had been restrictdd16,,]), while the time interval where the
convergence is granted reaches infinity.

In order to do this, one only needs to allow a dependendg @h Gy, so that the assumed
maximum value of the time difference varies with that of the gravitational constant. Suppose, let
us say, thaty(Gy) =Gy, with 0<«<1. Then, the bound38) on the cutoff becomes

/ 1
AkSGKyA( 1+W—1>. (39)
M

Thus, wherG,, tends to zero, we get the asymptotic behavig= G\*"%/2. SinceG\“""? and
G, diverge for vanishingsy,, because & a<1, we therefore conclude that the cutoff can be
removed in the limitG,; — 0 while ensuring that the time interved ,ty(Gy)], where the expan-
sion is well defined, covers the positive real axis.

We finally discuss the physical interpretation of this type of cutoff. It turns out to be intimately
related to the maximum resolution that can be reached for the physical time when a certain
perturbative approach is adopted to describe the quantum dyn%(nhr’rcsuch an approach, one
expands the evolution generator in powers®fand regards the free-field Hamiltonian as the
dominant contribution, with the higher powers seen as corrections. The auxiliaryTtiasoci-
ated with the free-field Hamiltonian, then plays the role of evolution parameter in the quantum
theory, whereas the physical time becomes an operator. It was shown in Ref. 27 that, under these
circumstances, a resolution limkt emerges for the physical time,

[At]? = 4G? + 4GT. (40)

Employing the inequalitw"1+xsx/(v'm— 1) for x>0, evaluated ak=ty,/(2G), one can
easily check from conditioi38) that the inverse of the cutoff satisfies
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— [~ . A~ .
A= VAGE + 2Gyty. (41)

Therefore, the bound oA, " equals that on the time resolutiakt for a valueG=G,, of the
gravitational constant and a time elapded2t,, (and thus of the same order @g. In this sense,
one can assign m;l the interpretation of a genuine resolution limit in the physical time.

The future prospects for this line of work will focus on the issue of deriving and obtaining
meaningful physical information from th® matrix of the model. We feel that the mathematical
techniques employed here to study the asymptotics of field commutators, with and without a
cutoff, will also be helpful in analyzing this issue. We plan to concentrate on this problem in the
future.
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