307 research outputs found

    Wilson Loop-Loop Correlators in AdS/QCD

    Full text link
    We calculate the expectation value of one circular Wilson loop and the correlator of two concentric circular Wilson loops in AdS/QCD using the modified AdS_5-metric given in Ref.[1]. The confinement properties of this metric in AdS/QCD are analyzed and compared with QCD and Nambu-Goto theory in four dimensions.Comment: 22 pages, 14 figure

    Self Excitation of the Tunneling Scalar Field in False Vacuum Decay

    Get PDF
    A method to determine the quantum state of a scalar field after O(4)O(4)-symmetric bubble nucleation has been developed recently. The method has an advantage that it concisely gives us a clear picture of the resultant quantum state. In particular, one may interpret the excitations as a particle creation phenomenon just as in the case of particle creation in curved spacetime. As an application, we investigate in detail the spectrum of quantum excitations of the tunneling field when it undergoes false vacuum decay. We consider a tunneling potential which is piece-wise quadratic, hence is simple enough to allow us an analytical treatment. We find a strong dependence of the excitation spectrum upon the shape of the potential on the true vacuum side. We then discuss features of the excitation spectrum common to general tunneling potentials not restricted to our simple model.Comment: 24 pages, uuencoded compressed postscript fil

    Path Integral Bosonization of Massive GNO Fermions

    Get PDF
    We show the quantum equivalence between certain symmetric space sine-Gordon models and the massive free fermions. In the massless limit, these fermions reduce to the free fermions introduced by Goddard, Nahm and Olive (GNO) in association with symmetric spaces K/GK/G. A path integral formulation is given in terms of the Wess-Zumino-Witten action where the field variable gg takes value in the orthogonal, unitary, and symplectic representations of the group GG in the basis of the symmetric space. We show that, for example, such a path integral bosonization is possible when the symmetric spaces K/GK/G are SU(N)×SU(N)/SU(N);N≀3, Sp(2)/U(2)SU(N) \times SU(N)/SU(N); N \le 3, ~ Sp(2)/U(2) or SO(8)/U(4)SO(8)/U(4). We also address the relation between massive GNO fermions and the nonabelian solitons, and explain the restriction imposed on the fermion mass matrix due to the integrability of the bosonic model.Comment: 11 page

    Generalized Conformal Quantum Mechanics of D0-brane

    Get PDF
    We study the generalized conformal quantum mechanics of the probe D0-brane in the near horizon background of the bound state of source D0-branes. We elaborate on the relationship of such model to the M theory in the light cone frame.Comment: 14 pages, RevTeX, revised version with added references to appear in Phys. Rev.

    Relation between Tunneling and Particle Production in Vacuum Decay

    Get PDF
    The field-theoretical description of quantum fluctuations on the background of a tunneling field σ\sigma is revisited in the case of a functional Schrodinger approach. We apply this method in the case when quantum fluctuations are coupled to the σ\sigma field through a mass-squared term, which is 'time-dependent' since we include the dynamics of σ\sigma . The resulting mode functions of the fluctuation field, which determine the quantum state after tunneling, display a previously unseen resonance effect when their mode number is comparable to the curvature scale of the bubble. A detailed analysis of the relation between the excitations of the field about the true vacuum (interpreted as particle creation) and the phase shift coming from tunneling is presented.Comment: 20 pages, 4 figures, submitted to PR

    String Theory on Dp-plane waves

    Get PDF
    We study the spectrum of solvable string models on plane waves descending from non-conformal Dp-brane geometries. We mainly focus on S-dual F1/D1-waves in type IIB and type I/heterotic 10D superstrings. We derive the Kaluza-Klein spectrum of N=1,2 10D supergravities on D1/F1-waves. We compute helicity supertraces counting multiplicities and R-charges of string excitations in the plane wave geometry. The results are compared against the expectations coming from gauge/supergravity descriptions. In the type I case, the Klein, Annulus and Moebius one-loop amplitudes are computed for ten-dimensional D1-waves. We test the consistency of the open string descendant by showing that after modular transformations to the closed string channel, the three amplitudes combine themselves to reconstruct a complete square (|B>+|C>)^2. Tadpole conditions are also discussed.Comment: 22 pages, Minor corrections, References adde

    Possible Effects of Noncommutative Geometry on Weak CP Violation and Unitarity Triangles

    Get PDF
    Possible effects of noncommutative geometry on weak CP violation and unitarity triangles are discussed by taking account of a simple version of the momentum-dependent quark mixing matrix in the noncommutative standard model. In particular, we calculate nine rephasing invariants of CP violation and illustrate the noncommutative CP-violating effect in a couple of charged D-meson decays. We also show how inner angles of the deformed unitarity triangles are related to CP-violating asymmetries in some typical B_d and B_s transitions into CP eigenstates. B-meson factories are expected to help probe or constrain noncommutative geometry at low energies in the near future.Comment: RexTev 16 pages. Modifications made. References added. Accepted for publication in Phys. Rev.

    Natural Theories of Ultra-Low Mass PNGB's: Axions and Quintessence

    Full text link
    We consider the Wilson Line PNGB which arises in a U(1)^N gauge theory, abstracted from a latticized, periodically compactified extra dimension U(1). Planck scale breaking of the PNGB's global symmetry is suppressed, providing natural candidates for the axion and quintessence. We construct an explicit model in which the axion may be viewed as the 5th component of the U(1)_Y gauge field in a 1+4 latticized periodically compactified extra dimension. We also construct a quintessence PNGB model where the ultra-low mass arises from Planck-scale suppressed physics itself.Comment: 20 pages, fixed typo and reference

    Superstrings on NS5 backgrounds, deformed AdS3 and holography

    Full text link
    We study a non-standard decoupling limit of the D1/D5-brane system, which interpolates between the near-horizon geometry of the D1/D5 background and the near-horizon limit of the pure D5-brane geometry. The S-dual description of this background is actually an exactly solvable two-dimensional (worldsheet) conformal field theory: {null-deformed SL(2,R)} x SU(2) x T^4 or K3. This model is free of strong-coupling singularities. By a careful treatment of the SL(2,R), based on the better-understood SL(2,R) / U(1) coset, we obtain the full partition function for superstrings on SL(2,R) x SU(2) x K3. This allows us to compute the partition functions for the J^3 and J^2 current-current deformations, as well as the full line of supersymmetric null deformations, which links the SL(2,R) conformal field theory with linear dilaton theory. The holographic interpretation of this setup is a renormalization-group flow between the decoupled NS5-brane world-volume theory in the ultraviolet (Little String Theory), and the low-energy dynamics of super Yang--Mills string-like instantons in six dimensions.Comment: JHEP style, 59 pages, 1 figure; v2: minor changes, to appear in JHE

    The QCD Phase Structure at High Baryon Density

    Get PDF
    We consider the possibility that color deconfinement and chiral symmetry restoration do not coincide in dense baryonic matter at low temperature. As a consequence, a state of massive "constituent" quarks would exist as an intermediate phase between confined nuclear matter and the plasma of deconfined massless quarks and gluons. We discuss the properties of this state and its relation to the recently proposed quarkyonic matter.Comment: 17 pages, 9 figure
    • 

    corecore