621 research outputs found
La révolution révolutionnée
Sâappuyant sur les bases de donnĂ©es des publications anglaises, Ă©tats-uniennes et françaises des xviiie et xixe siĂšcles, cet article montre que la rĂ©volution a Ă©tĂ© « rĂ©volutionnĂ©e » en 1789, en ce sens que la notion de rĂ©volution comme « fait accompli » cĂšde le pas Ă une conceptualisation de la rĂ©volution comme acte en cours. Avec cette transformation, la « rĂ©volution » assume sa signification politique moderne et la RĂ©volution française devient le texte Ă partir duquel les rĂ©volutionnaires Ă venir improviseront.Drawing from databases of 18th and 19th century English, American and French publications, this article shows that the revolution was ârevolutionizedâ in 1789, in that the idea of the revolution as a fait accompli gives way to a conceptualisation of the revolution as an action in process. This transformation sees the term ârevolutionâ take on its modern political meaning, and the French Revolution becomes the source text for the improvisations of future revolutionaries
The Grizzly, April 5, 2012
String Ensemble Impresses Hope âą Career Services Hosts Webinar âą Ball at the Bellevue a Success, Continues to Draw Large Number of Student Participants âą Sue Thomas Retires from Admissions Staff âą Caitlin Callahan Interns as Veterinary Tech âą Greek Week Approaches, MAA and Quiz Club Plan to Participate âą UC Welcomes Teisa Brown to President\u27s Staff âą Nothing to Hate About this Hamlet âą Phillies to Continue Success Despite Worries âą Senior Spotlight: Garrett Smith, Baseball âą Bears Battle Through Wet Weekend âą Player Spotlight: Jenni Weber, Softballhttps://digitalcommons.ursinus.edu/grizzlynews/1857/thumbnail.jp
Recommended from our members
X-ray Spectroscopic Study of the Electronic Structure of a Trigonal High-Spin Fe(IV)âO Complex Modeling Non-Heme Enzyme Intermediates and Their Reactivity
Fe K-edge X-ray absorption spectroscopy (XAS) has long been used for the study of high-valent iron intermediates in biological and artificial catalysts. 4p-mixing into the 3d orbitals complicates the pre-edge analysis but when correctly understood via 1s2p resonant inelastic X-ray scattering and Fe L-edge XAS, it enables deeper insight into the geometric structure and correlates with the electronic structure and reactivity. This study shows that in addition to the 4p-mixing into the 3dz2 orbital due to the short iron-oxo bond, the loss of inversion in the equatorial plane leads to 4p mixing into the 3dx2-y2,xy, providing structural insight and allowing the distinction of 6- vs 5-coordinate active sites as shown through application to the Fe(IV)âO intermediate of taurine dioxygenase. Combined with O K-edge XAS, this study gives an unprecedented experimental insight into the electronic structure of Fe(IV)âO active sites and their selectivity for reactivity enabled by the Ï-pathway involving the 3dxz/yz orbitals. Finally, the large effect of spin polarization is experimentally assigned in the pre-edge (i.e., the α/ÎČ splitting) and found to be better modeled by multiplet simulations rather than by commonly used time-dependent density functional theory
Improvements to the APBS biomolecular solvation software suite
The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve
the equations of continuum electrostatics for large biomolecular assemblages
that has provided impact in the study of a broad range of chemical, biological,
and biomedical applications. APBS addresses three key technology challenges for
understanding solvation and electrostatics in biomedical applications: accurate
and efficient models for biomolecular solvation and electrostatics, robust and
scalable software for applying those theories to biomolecular systems, and
mechanisms for sharing and analyzing biomolecular electrostatics data in the
scientific community. To address new research applications and advancing
computational capabilities, we have continually updated APBS and its suite of
accompanying software since its release in 2001. In this manuscript, we discuss
the models and capabilities that have recently been implemented within the APBS
software package including: a Poisson-Boltzmann analytical and a
semi-analytical solver, an optimized boundary element solver, a geometry-based
geometric flow solvation model, a graph theory based algorithm for determining
p values, and an improved web-based visualization tool for viewing
electrostatics
The Samurai Project: verifying the consistency of black-hole-binary waveforms for gravitational-wave detection
We quantify the consistency of numerical-relativity black-hole-binary
waveforms for use in gravitational-wave (GW) searches with current and planned
ground-based detectors. We compare previously published results for the
mode of the gravitational waves from an equal-mass
nonspinning binary, calculated by five numerical codes. We focus on the 1000M
(about six orbits, or 12 GW cycles) before the peak of the GW amplitude and the
subsequent ringdown. We find that the phase and amplitude agree within each
code's uncertainty estimates. The mismatch between the modes
is better than for binary masses above with respect to
the Enhanced LIGO detector noise curve, and for masses above
with respect to Advanced LIGO, Virgo and Advanced Virgo. Between the waveforms
with the best agreement, the mismatch is below . We find that
the waveforms would be indistinguishable in all ground-based detectors (and for
the masses we consider) if detected with a signal-to-noise ratio of less than
, or less than in the best cases.Comment: 17 pages, 9 figures. Version accepted by PR
The Mock LISA Data Challenges: from Challenge 3 to Challenge 4
The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis
capabilities and to encourage their development. Each round of challenges
consists of one or more datasets containing simulated instrument noise and
gravitational waves from sources of undisclosed parameters. Participants
analyze the datasets and report best-fit solutions for the source parameters.
Here we present the results of the third challenge, issued in Apr 2008, which
demonstrated the positive recovery of signals from chirping Galactic binaries,
from spinning supermassive--black-hole binaries (with optimal SNRs between ~ 10
and 2000), from simultaneous extreme-mass-ratio inspirals (SNRs of 10-50), from
cosmic-string-cusp bursts (SNRs of 10-100), and from a relatively loud
isotropic background with Omega_gw(f) ~ 10^-11, slightly below the LISA
instrument noise.Comment: 12 pages, 2 figures, proceedings of the 8th Edoardo Amaldi Conference
on Gravitational Waves, New York, June 21-26, 200
Genome-wide characterization of pancreatic adenocarcinoma patients using next generation sequencing
Pancreatic adenocarcinoma (PAC) is among the most lethal malignancies. While research has implicated multiple genes in disease pathogenesis, identification of therapeutic leads has been difficult and the majority of currently available therapies provide only marginal benefit. To address this issue, our goal was to genomically characterize individual PAC patients to understand the range of aberrations that are occurring in each tumor. Because our understanding of PAC tumorigenesis is limited, evaluation of separate cases may reveal aberrations, that are less common but may provide relevant information on the disease, or that may represent viable therapeutic targets for the patient. We used next generation sequencing to assess global somatic events across 3 PAC patients to characterize each patient and to identify potential targets. This study is the first to report whole genome sequencing (WGS) findings in paired tumor/normal samples collected from 3 separate PAC patients. We generated on average 132 billion mappable bases across all patients using WGS, and identified 142 somatic coding events including point mutations, insertion/deletions, and chromosomal copy number variants. We did not identify any significant somatic translocation events. We also performed RNA sequencing on 2 of these patients' tumors for which tumor RNA was available to evaluate expression changes that may be associated with somatic events, and generated over 100 million mapped reads for each patient. We further performed pathway analysis of all sequencing data to identify processes that may be the most heavily impacted from somatic and expression alterations. As expected, the KRAS signaling pathway was the most heavily impacted pathway (P<0.05), along with tumor-stroma interactions and tumor suppressive pathways. While sequencing of more patients is needed, the high resolution genomic and transcriptomic information we have acquired here provides valuable information on the molecular composition of PAC and helps to establish a foundation for improved therapeutic selection
A panel of genes methylated with high frequency in colorectal cancer
Background:
The development of colorectal cancer (CRC) is accompanied by extensive epigenetic changes, including frequent regional hypermethylation particularly of gene promoter regions. Specific genes, including SEPT9, VIM1 and TMEFF2 become methylated in a high fraction of cancers and diagnostic assays for detection of cancer-derived methylated DNA sequences in blood and/or fecal samples are being developed. There is considerable potential for the development of new DNA methylation biomarkers or panels to improve the sensitivity and specificity of current cancer detection tests. Methods:
Combined epigenomic methods - activation of gene expression in CRC cell lines following DNA demethylating treatment, and two novel methods of genome-wide methylation assessment - were used to identify candidate genes methylated in a high fraction of CRCs. Multiplexed amplicon sequencing of PCR products from bisulfite-treated DNA of matched CRC and non-neoplastic tissue as well as healthy donor peripheral blood was performed using Roche 454 sequencing. Levels of DNA methylation in colorectal tissues and blood were determined by quantitative methylation specific PCR (qMSP). Results:
Combined analyses identified 42 candidate genes for evaluation as DNA methylation biomarkers. DNA methylation profiles of 24 of these genes were characterised by multiplexed bisulfite-sequencing in ten matched tumor/normal tissue samples; differential methylation in CRC was confirmed for 23 of these genes. qMSP assays were developed for 32 genes, including 15 of the sequenced genes, and used to quantify methylation in tumor, adenoma and non-neoplastic colorectal tissue and from healthy donor peripheral blood. 24 of the 32 genes were methylated in \u3e50% of neoplastic samples, including 11 genes that were methylated in 80% or more CRCs and a similar fraction of adenomas. Conclusions:
This study has characterised a panel of 23 genes that show elevated DNA methylation in \u3e50% of CRC tissue relative to non-neoplastic tissue. Six of these genes (SOX21, SLC6A15, NPY, GRASP, ST8SIA1 and ZSCAN18) show very low methylation in non-neoplastic colorectal tissue and are candidate biomarkers for stool-based assays, while 11 genes (BCAT1, COL4A2, DLX5, FGF5, FOXF1, FOXI2, GRASP, IKZF1, IRF4, SDC2 and SOX21) have very low methylation in peripheral blood DNA and are suitable for further evaluation as blood-based diagnostic markers
European communication networks in the Early Modern Age
Recent contributions to knowledge about early journalism developed in different parts of Europe*Italy, France, England, Germany, the Netherlands, Portugal, Spain . . . *have made it possible to trace a fairly precise map for the historical origin of this phenomenon. However, the scope of work carried out with a view to developing frameworks of interpretation to explain the reasons for this appearance is not as far-reaching. This paper reviews the recurring theoretical models found to date in the specific bibliography and proposes a new framework of interpretation, capable of encompassing the complexity and pan-European nature of early journalism in history
- âŠ