8 research outputs found

    Population Analysis of the Fusarium graminearum Species Complex from Wheat in China Show a Shift to More Aggressive Isolates

    Get PDF
    A large number of Fusarium isolates was collected from blighted wheat spikes originating from 175 sampling sites, covering 15 provinces in China. Species and trichothecene chemotype determination by multilocus genotyping (MLGT) indicated that F. graminearum s. str. with the 15-acetyl deoxynivalenol (15ADON) chemotype and F. asiaticum with either the nivalenol (NIV) or the 3-acetyl deoxynivalenol (3ADON) chemotype were the dominant causal agents. Bayesian model-based clustering with allele data obtained with 12 variable number of tandem repeats (VNTR) markers, detected three genetic clusters that also show distinct chemotypes. High levels of population genetic differentiation and low levels of effective number of migrants were observed between these three clusters. Additional genotypic analyses revealed that F. graminearum s. str. and F. asiaticum are sympatric. In addition, composition analysis of these clusters indicated a biased gene flow from 3ADON to NIV producers in F. asiaticum. In phenotypic analyses, F. asiaticum that produce 3ADON revealed significant advantages over F. asiaticum that produce NIV in pathogenicity, growth rate, fecundity, conidial length, trichothecene accumulation and resistance to benzimidazole. These results suggest that natural selection drives the spread of a more vigorous, more toxigenic pathogen population which also shows higher levels of fungicide resistance

    The roles of vicariance and isolation by distance in shaping biotic diversification across an ancient archipelago: evidence from a Seychelles caecilian amphibian

    Get PDF
    © 2020 The Authors. Published by BMC. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1186/s12862-020-01673-wBackground Island systems offer excellent opportunities for studying the evolutionary histories of species by virtue of their restricted size and easily identifiable barriers to gene flow. However, most studies investigating evolutionary patterns and processes shaping biotic diversification have focused on more recent (emergent) rather than ancient oceanic archipelagos. Here, we focus on the granitic islands of the Seychelles, which are unusual among island systems because they have been isolated for a long time and are home to a monophyletic radiation of caecilian amphibians that has been separated from its extant sister lineage for ca. 65–62 Ma. We selected the most widespread Seychelles caecilian species, Hypogeophis rostratus, to investigate intraspecific morphological and genetic (mitochondrial and nuclear) variation across the archipelago (782 samples from nine islands) to identify patterns and test processes that shaped their evolutionary history within the Seychelles. Results Overall a signal of strong geographic structuring with distinct northern- and southern-island clusters were identified across all datasets. We suggest that these distinct groups have been isolated for ca. 1.26 Ma years without subsequent migration between them. Populations from the somewhat geographically isolated island of Frégate showed contrasting relationships to other islands based on genetic and morphological data, clustering alternatively with northern-island (genetic) and southern-island (morphological) populations. Conclusions Although variation in H. rostratus across the Seychelles is explained more by isolation-by-distance than by adaptation, the genetic-morphological incongruence for affinities of Frégate H. rostratus might be caused by local adaptation over-riding the signal from their vicariant history. Our findings highlight the need of integrative approaches to investigate fine-scale geographic structuring to uncover underlying diversity and to better understand evolutionary processes on ancient, continental islands.Funding for this research was provided by two grants from the National Science Foundation (BSR 88–17453, BSR 90–24505) [funding for fieldwork and lab work], two grants from the National Geographic Society (Grants 1977: 1633, 1743) [funding for fieldwork], three grants from the University of Michigan Office of the Vice President for Research, and a Research Partnership Award from the University of Michigan to RAN [morphology work]; a joint NHM-UCL IMPACT studentship [to fund STM’s PhD, lab work and fieldwork], Mohamed Bin Zayed Species Conservation Fund [funding for fieldwork] and Systematics Research Fund [funding for fieldwork] to STM; an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under Grant #P20GM103408 to LL [funding for lab work]; a NERC/BBSRC SynTax grant [funding for fieldwork and collaboration], and Darwin Initiative (grant 19–002) [funding for fieldwork, lab work and capacity building] with partners Bristol University, Islands Conservation Society, Seychelles Islands Foundation, Seychelles Ministry of Environment, Seychelles National Parks Authority, Seychelles Natural History Museum, University of Kent, Zoological Society of London to MW, DJG, JJD. The funding bodies played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.Published onlin

    Fusarium Species Infection in Wheat: Impact on Quality and Mycotoxin Accumulation

    No full text
    International audienceWheat is the most consumed cereal worldwide and can be processed to different products for human consumption. This crop can be infected by Fusarium species, among them those within the Fusarium graminearum complex causing Fusarium head blight (FHB. The disease can severely reduce grain yield and quality under conditions of high humidity and warm temperatures during anthesis. Moreover the grains can be contaminated with mycotoxin such as trichothecenes, among them deoxynivalenol and their acetyl derivates 3-ADON, 15-ADON and DON-3-glucoside. Some years, depending on the environmental conditions Fusarium proliferatum can also infect the grain and fumonisin contamination can be observed. To understand the way of grain infection by Fusarium species will help to undertake strategies to reduce the problem both at pre-harvest and during processing to select adequate procedures to manage mycotoxin production. Different strategies at different stages of the wheat chain have been proposed to reduce the impact of FHB and mycotoxin accumulation
    corecore