8 research outputs found

    Radiation-induced polymerization of 3-hexylthiophene in oxygen-free and oxygen-saturated dichloromethane solvent

    Get PDF
    We thank Jean-Michel Guigner (IMPMC, Université Pierre et Marie Curie, France) for Cryo-TEM experiments.As alternative radiolytic approach, the synthesis of P3HT was made possible thanks to the oxidation of 3HT monomers by chloromethyl and dichloromethyl radicals or by their corresponding peroxyl radicals in situ produced by dichloromethane solvent radiolysis. Under two different experimental conditions, in oxygen-free solution and in oxygen-saturated solution, two different polymers, “P3HTN2” and “P3HTO2” respectively, were successfully synthesized. Both produced materials were discerned by several analytical and spectroscopic techniques. UV–Vis absorption spectroscopy results showed that the radiolytic yield of 3HT oxidation in dichloromethane solvent is higher under O2 atmosphere. Indeed, a dose of 75 kGy was needed to polymerize 10 mM in 3HT under N2 atmosphere, meanwhile a dose of 35 kGy was sufficient to polymerize the same amount of 3HT under O2. The average molecular weight of P3HTO2was found higher than that of P3HTN2 as revealed by SEC chromatography analysis. Also, P3HTO2exhibits better thermal stability than P3HTN2. ATR-FTIR spectroscopy revealed the specific presence into P3HTO2 polymers of some functional groups such as carbonyl, hydroxyl and carboxyl moieties, which clearly explains the difference between the morphological structures of P3HTN2 and P3HTO2 as highlighted by cryo-TEM, SEM and AFM microscopies. Finally, both radio-synthesized P3HTN2 and P3HTO2 polymers were found characterized by remarkably significant conductive, electronic and optical properties

    An alternative radiolytic route for synthesizing conducting polymers in an organic solvent

    Get PDF
    A new and simple promising method for synthesizing conducting polymers in organic solvents was successfully achieved for the first time thanks to the oxidative polymerization of 3,4-ethylenedioxythiophene (EDOT) monomers dissolved in dichloromethane by means of gamma-radiolysis. The EDOT polymerization was controlled and optimized thanks to the study of the dose effect under an inert atmosphere. UV-Vis absorption spectroscopy was used to follow the polymerization process and to estimate both the radiolytic yield of EDOT oxidation and the required irradiation dose for quantitative poly(3,4-ethylenedioxythiophene) (PEDOT) preparation. Size exclusion chromatography (SEC) was used to determine the molar mass of the PEDOT polymers and thus their degree of polymerization. Polymers containing up to 20 EDOT units were detected. After deposition, ATR-FTIR spectroscopy and Energy-Dispersive X-ray (EDX) analysis highlighted the in situ doping of PEDOT polymers with chloride ions generated during dichloromethane radiolysis, while XRD analysis demonstrated the amorphous structure of the polymers. The morphology of the radiosynthesized PEDOT polymers was characterized in solution by Cryo-TEM microscopy and after deposition by SEM microscopy as well as by high-resolution AFM-IR microscopy coupled with infrared nanospectroscopy. In all cases, aggregated and packed spheroidal PEDOT particles with diameters comprising between 100 nm and 1.5 ÎĽm were observed. Besides, cyclic voltammetry (CV), four-point probe measurements and thermogravimetric analysis (TGA) showed that the PEDOT polymers radiosynthesized in dichloromethane are characterized by interesting electrical properties and good thermal stability. The present study bears witness to the tremendous potential of our radiation-based methodology and gives us a glimpse of future promising syntheses of different kinds of conducting polymers in organic solvents and even in complex matrices

    Optimal strategy based on radiation chemistry for facile and direct synthesis of poly(3-thiophene acetic acid) polymers in water and dichloromethane

    Get PDF
    In this work, synthesis of nanostructured conducting poly(3-thiophene acetic acid) (PTAA) polymers was developed by means of Îł-induced oxidative polymerization of TAA monomers dissolved either in water or in dichloromethane. This synthesis was shown to be facile and directly feasible without any prior esterification of TAA and in the absence of oxidizing agents. Radiolytic yields of TAA oxidation as well as irradiation doses required for quantitative PTAA preparation were determined for each solvent. UV-Vis and ATR-FTIR spectroscopies demonstrated the successful formation of two PTAA polymers, so-called "PTAAH2O"and "PTAACH2Cl2". Size exclusion chromatography (SEC) highlighted convergent molecular weight values corresponding to approximately 13 monomer units. A similar behavior for both radio-synthesized PTAAs was monitored by thermogravimetric analysis (TGA). The morphological structures of PTAAH2O and PTAACH2Cl2 were analyzed in solution by Cryo-TEM and after deposition by SEM and AFM. Microscopic observations revealed the presence of two distinguishable nanostructures: nano-spherules of several hundreds of nanometers made of PTAAH2O and nano-granules of several tens of nanometers made of PTAACH2Cl2. Cyclic voltammetry analysis and the Tauc plot method were employed to calculate the electrical and optical band gaps. Both polymers possess similar electrical band gaps. However, PTAACH2Cl2 affords a lower optical band gap than PTAAH2O. Four-point probe measurements showed that the radio-synthesized PTAA polymers are characterized by interesting electrical properties: a higher electrical conductivity was nevertheless recorded for PTAACH2Cl2. This study highlights the powerful ability of the radiation chemistry-based methodology to lead, as a simple, versatile and reliable method, to nanostructured PTAA conducting polymers either in aqueous or organic solutions

    Extension de la procédure radiolytique à la préparation de polymères conducteurs dans des solvants organiques : synthèse, caractérisation et applications

    Get PDF
    The extension of our original radiolytic methodology to the use of organic solvents was an important alternative approach to radiation-induced polymerization of conducting polymers (CPs) in aqueous solutions. The polymerization of CPs was studied by using gamma-radiolysis of several organic solvents under different environmental conditions. The optimization of the synthesis conditions of CPs was then conducted into dichloromethane solvent. After optimization of the synthesis conditions (atmosphere, dose, dose rate, concentration of organic monomers, etc.), the use of dichloromethane radiolysis was successfully employed to synthesize various types of conducting polymers: Poly (3,4-ethylenedioxythiophene) (PEDOT), Poly (3-thiophene acetic acid) (PTAA) and Poly (3-hexylthiophene) (P3HT). The radio-synthesized polymers were fully characterized in solution and after deposition by complementary analytical, spectroscopic and microscopic techniques. Also, the simplicity and versatility of radiation induced polymerization of 3-thiophene acetic acid in dichloromethane and in aqueous solutions was demonstrated. The differences between the two radiolysis routes were highlighted. Furthermore, the influence of generating different oxidizing species under different atmospheres (N₂, air or O₂) upon ɣ-irradiation of dichloromethane solutions containing organic monomers was also studied in particular in case of P3HT. The electronic and electrochemical properties were checked for all radio-synthesized CPs. Accordingly, these polymers were then incorporated in hybrid organic and inorganic perovskite solar cells (PSCs) and used as hole transport materials (HTMs). Our new radiolytic strategy described and extended in this manuscript opens the way for the preparation of new nanostructured CPs with controlled morphology and enhanced properties by using microemulsion polymerization and also for the preparation of processable conjugated materials through copolymerization.Dans le présent travail, nous avons étendu aux solvants organiques notre méthodologie radiolytique de synthèse de polymères conducteurs (PCs), initialement développée en solutions aqueuses. Dans ce contexte, la polymérisation des PCs a été étudiée par radiolyse gamma dans différents solvants organiques et sous différentes conditions expérimentales. La synthèse radio-induite a, en particulier, été optimisée dans le dichlorométhane grâce à la variation et à l’ajustement de différents paramètres : atmosphère, dose, débit de dose, concentration des monomères, etc. Cette synthèse a ainsi pu mener à la préparation de différents types de polymères conducteurs : poly (3,4-éthylènedioxythiophène), poly (3-thiophène acétique acide) and Poly (3-hexylthiophène). Ces derniers ont été totalement caractérises en solutions ou après dépôt par des techniques analytiques, spectroscopiques et microscopiques complémentaires. Nous avons en particulier démontré la simplicité et la versatilité de la polymérisation radio-induite de TAA que ce soit dans le dichlorométhane ou dans l’eau, et avons mis en évidence quelques différentes notable entre ces deux voies de synthèse. Nous avons, par ailleurs, évalué l’influence de la nature des espèces radiolytiques oxydantes générées dans le dichlorométhane, via la variation de l’atmosphère de travail (N₂, air ou O₂), sur les propriétés des polymères conducteurs radio-synthétises, en particulier dans le cas de P3HT. Parmi les nombreuses propriétés physiques chimiques que nous avons sondées dans le cas de tous nos polymères conducteurs radio- synthétises les propriétés électroniques et électrochimiques ont fait l’objet d’une attention particulière. Nos matériaux ont alors été incorporés au sien de cellules solaires à pérovskite hybrides organiques-inorganique (PSCs) et y ont été utilisés comme matériaux de transport de trous (HTMs). Notre nouvelle stratégie radiolytique de synthèse décrite et étendu dans le présent manuscrit, ouvre sans aucun doute la voie à la préparation de nouveaux PCs nanostructurés, de morphologie contrôlée et aux propriétés augmentées : par exemple grâce à l’utilisation d’une polymérisation en microémulsions ou par le développement d’une copolymérisation raisonnée

    Ultrasonic-assisted oxidation of cellulose to oxalic acid over gold nanoparticles supported on iron-oxide

    No full text
    International audienceWe demonstrate a catalytic base-free strategy for the selective oxidation of microcrystalline cellulose to oxalic acid (OA) by combining low frequency ultrasound as an unconventional activation technique and Au/Fe 2 O 3 as a catalyst.The use of unconventional activation techniques, such as low frequency ultrasound (US), in combination with heterogeneous catalysts offers a powerful synergistic approach to transform renewable resources to value added chemicals. In this context, we report a catalytic base-free strategy for the selective oxidation of microcrystalline cellulose to oxalic acid (OA) by combining low frequency ultrasound and Au/Fe2O3 as a catalyst. We demonstrate that low frequency ultrasound induces the fragmentation of cellulose particles, making it more prone to catalytic oxidation in the presence of Au/Fe2O3. Under the optimized conditions, OA was obtained in 45% yield in the presence of molecular oxygen, corresponding to an overall yield of 53% into carboxylic acids (gluconic, formic, 2-keto-gluconic acid, etc.). Furthermore, by means of density functional theory, it was demonstrated that a charge transfer occurred from Au nanoparticles to Fe2O3, resulting in the formation of active catalytic species capable of decomposing H2O2, formed by sonolysis of water, to reactive O* species that were involved in the oxidation of cellulose. This charge transfer was also highlighted by X-ray photoelectron spectroscopy which revealed a partial oxidation of Au-0 to Au3+

    Gamma rays as an innovative tool for synthesizing conducting copolymers with improved properties

    No full text
    In the present study, copolymers of pyrrole (Py) with different co-monomers (thiophene derivatives) were originally polymerized through two radiolytic approaches: water radiolysis and dichloromethane radiolysis. This method can be easily controlled and is adaptable. The main objective of copolymerization is to increase the solubility and processability of polypyrrole (PPy). The synthesis of copolymers was validated by UV-Vis absorption spectroscopy that indicates monomers’ quantitative consumption and by ATR-FTIR that validates their chemical composition. Scanning electron microscopy (SEM) and cryogenic transmission electron microscopy (Cryo-TEM) were used to check the morphology and topography of the synthesized copolymers of Py and to compare them with their respective homopolymers. Additionally, a comparative study of thermal behavior and molecular weight distribution of copolymers with their homopolymers was performed using thermogravimetric analysis (TGA) and size exclusion chromatography (SEC), respectively. Finally, conductivity and electrochemical measurements were performed. The results showed the successful synthesis of copolymers of Py by this novel radiolytic method with changes in their morphologies and physicochemical properties with respect to the homopolymers. The present work definitely validates radiation chemistry as an alternative approach to synthesize conducting copolymers.

    Harnessing ultrasound-derived hydroxyl radicals for the selective oxidation of aldehyde functions

    No full text
    Ultrasonic irradiation holds potential for the selective oxidation of non-volatile organic substrates in the aqueous phase by harnessing hydroxyl radicals as chemical initiators. Here, a mechanistic description of hydroxyl radical-initiated glyoxal oxidation is constructed by gleaning insights from photolysis and radiation chemistry to explain the yields and kinetic trends for oxidation products. The mechanistic description and kinetic measurements reported herein reveal that increasing the formation rate of hydroxyl radicals by changing the ultrasound frequency increases both the rates of glyoxal consumption and the selectivity towards C2 acid products over those from C-C cleavage. Glyoxal consumption also occurs more rapidly and with greater selectivity towards C2 acids under acidic conditions, which favor the protonation of carboxylate intermediates into their less reactive acidic forms. Leveraging such pH and frequency effects is crucial to mitigating product degradation by secondary reactions with hydroxyl radicals and oxidation products (specifically H2O2 and •O2–). These findings demonstrate the potential of ultrasound as a driver for the selective oxidation of aldehyde functions to carboxylic acids, offering a sustainable route for converting biomass-derived platform molecules into valuable products
    corecore