550 research outputs found
Early ART in Acute HIV-1 Infection: Impact on the B-Cell Compartment
HIV-1 infection induces B cell defects, not fully recovered upon antiretroviral therapy (ART). Acute infection and the early start of ART provide unique settings to address the impact of HIV on the B cell compartment. We took advantage of a cohort of 21 seroconverters, grouped according to the presence of severe manifestations likely mediated by antibodies or immune complexes, such as Guillain-Barré syndrome and autoimmune thrombocytopenic purpura, with a follow-up of 8 weeks upon effective ART. We combined B and T cell phenotyping with serum immunoglobulin level measurement and quantification of sj-KRECs and ΔB to estimate bone marrow output and peripheral proliferative history of B cells, respectively. We observed marked B cell disturbances, notably a significant expansion of cells expressing low levels of CD21, in parallel with markers of both impaired bone marrow output and increased peripheral B cell proliferation. This B cell dysregulation is likely to contribute to the severe immune-mediated conditions, as attested by the higher serum IgG and the reduced levels of sj-KRECs with increased ΔB in these individuals as compared to those patients with mild disease. Nevertheless, upon starting ART, the dynamic of B cell recovery was not distinct in the two groups, featuring both persistent alterations by week 8. Overall, we showed for the first time that acute HIV-1 infection is associated with decreased bone marrow B cell output assessed by sj-KRECs. Our study emphasizes the need to intervene in both bone marrow and peripheral responses to facilitate B cell recovery during acute HIV-1 infection.info:eu-repo/semantics/publishedVersio
The HADES Tracking System
The tracking system of the dielectron spectrometer HADES at GSI Darmstadt is
formed out of 24 low-mass, trapezoidal multi-layer drift chambers providing in
total about 30 square meter of active area. Low multiple scattering in the in
total four planes of drift chambers before and after the magnetic field is
ensured by using helium-based gas mixtures and aluminum cathode and field
wires. First in-beam performance results are contrasted with expectations from
simulations. Emphasis is placed on the energy loss information, exploring its
relevance regarding track recognition.Comment: 6 pages, 4 figures, presented at the 10th Vienna Conference on
Instrumentation, Vienna, February 2004, to be published in NIM A (special
issue
Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma
Background aims
Natural killer (NK) cells can rapidly respond to transformed and stressed cells and represent an important effector cell type for adoptive immunotherapy. In addition to donor-derived primary NK cells, continuously expanding cytotoxic cell lines such as NK-92 are being developed for clinical applications.
Methods
To enhance their therapeutic utility for the treatment of B-cell malignancies, we engineered NK-92 cells by lentiviral gene transfer to express chimeric antigen receptors (CARs) that target CD19 and contain human CD3ζ (CAR 63.z), composite CD28-CD3ζ or CD137-CD3ζ signaling domains (CARs 63.28.z and 63.137.z).
Results
Exposure of CD19-positive targets to CAR NK-92 cells resulted in formation of conjugates between NK and cancer cells, NK-cell degranulation and selective cytotoxicity toward established B-cell leukemia and lymphoma cells. Likewise, the CAR NK cells displayed targeted cell killing of primary pre-B-ALL blasts that were resistant to parental NK-92. Although all three CAR NK-92 cell variants were functionally active, NK-92/63.137.z cells were less effective than NK-92/63.z and NK-92/63.28.z in cell killing and cytokine production, pointing to differential effects of the costimulatory CD28 and CD137 domains. In a Raji B-cell lymphoma model in NOD-SCID IL2R γnull mice, treatment with NK-92/63.z cells, but not parental NK-92 cells, inhibited disease progression, indicating that selective cytotoxicity was retained in vivo.
Conclusions
Our data demonstrate that it is feasible to generate CAR-engineered NK-92 cells with potent and selective antitumor activity. These cells may become clinically useful as a continuously expandable off-the-shelf cell therapeutic agent
Validating the early phototherapy prediction tool across cohorts
Background: Hyperbilirubinemia of the newborn infant is a common disease worldwide. However, recognized early and treated appropriately, it typically remains innocuous. We recently developed an early phototherapy prediction tool (EPPT) by means of machine learning (ML) utilizing just one bilirubin measurement and few clinical variables. The aim of this study is to test applicability and performance of the EPPT on a new patient cohort from a different population.
Materials and methods: This work is a retrospective study of prospectively recorded neonatal data from infants born in 2018 in an academic hospital, Regensburg, Germany, meeting the following inclusion criteria: born with 34 completed weeks of gestation or more, at least two total serum bilirubin (TSB) measurement prior to phototherapy. First, the original EPPT—an ensemble of a logistic regression and a random forest—was used in its freely accessible version and evaluated in terms of the area under the receiver operating characteristic curve (AUROC). Second, a new version of the EPPT model was re-trained on the data from the new cohort. Third, the predictive performance, variable importance, sensitivity and specificity were analyzed and compared across the original and re-trained models.
Results: In total, 1,109 neonates were included with a median (IQR) gestational age of 38.4 (36.6–39.9) and a total of 3,940 bilirubin measurements prior to any phototherapy treatment, which was required in 154 neonates (13.9%). For the phototherapy treatment prediction, the original EPPT achieved a predictive performance of 84.6% AUROC on the new cohort. After re-training the model on a subset of the new dataset, 88.8% AUROC was achieved as evaluated by cross validation. The same five variables as for the original model were found to be most important for the prediction on the new cohort, namely gestational age at birth, birth weight, bilirubin to weight ratio, hours since birth, bilirubin value.
Discussion: The individual risk for treatment requirement in neonatal hyperbilirubinemia is robustly predictable in different patient cohorts with a previously developed ML tool (EPPT) demanding just one TSB value and only four clinical parameters. Further prospective validation studies are needed to develop an effective and safe clinical decision support system
New Young Star Candidates in BRC 27 and BRC 34
We used archival Spitzer Space Telescope mid-infrared data to search for
young stellar objects (YSOs) in the immediate vicinity of two bright-rimmed
clouds, BRC 27 (part of CMa R1) and BRC 34 (part of the IC 1396 complex). These
regions both appear to be actively forming young stars, perhaps triggered by
the proximate OB stars. In BRC 27, we find clear infrared excesses around 22 of
the 26 YSOs or YSO candidates identified in the literature, and identify 16 new
YSO candidates that appear to have IR excesses. In BRC 34, the one
literature-identified YSO has an IR excess, and we suggest 13 new YSO
candidates in this region, including a new Class I object. Considering the
entire ensemble, both BRCs are likely of comparable ages, within the
uncertainties of small number statistics and without spectroscopy to confirm or
refute the YSO candidates. Similarly, no clear conclusions can yet be drawn
about any possible age gradients that may be present across the BRCs.Comment: 54 pages, 19 figures, accepted by A
Defect engineering over anisotropic brookite toward substrate-specific photo-oxidation of alcohols
Generally adopted strategies for enhancing the photocatalytic activity are aimed at tuning the visible light response, the exposed crystal facets, and the nanocrystal shape. Here, we present a different approach for designing efficient photocatalysts displaying a substrate-specific reactivity upon defect engineering. The platinized, defective anisotropic brookite TiO2 photocatalysts are tested for alcohol photoreforming showing up to an 11-fold increase in methanol oxidation rate, compared with the pristine one, while presenting much lower ethanol or isopropanol specific oxidation rates. We demonstrate that the substrate- specific alcohol oxidation and hydrogen evolution reactions are tightly related, and when the former is increased, the latter is boosted. The reduced anisotropic brookite shows up to 18-fold higher specific photoactivity with respect to anatase and brookite with isotropic nanocrystals. Advanced in situ characterizations and theoretical investigations reveal that controlled engineering over oxygen vacancies and lattice strain produces large electron polarons hosting the substratespecific active sites for alcohol photo-oxidation
Acute HIV-1 and SARS-CoV-2 infections Share Slan+ Monocyte Depletion - evidence from an hyperacute HIV-1 case report
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Monocytes are key modulators in acute viral infections, determining both inflammation and development of specific B- and T-cell responses. Recently, these cells were shown to be associated to different SARS-CoV-2 infection outcome. However, their role in acute HIV-1 infection remains unclear. We had the opportunity to evaluate the mononuclear cell compartment in an early hyper-acute HIV-1 patient in comparison with an untreated chronic HIV-1 and a cohort of SARS-CoV-2 infected patients, by high dimensional flow cytometry using an unsupervised approach. A distinct polarization of the monocyte phenotype was observed in the two viral infections, with maintenance of pro-inflammatory M1-like profile in HIV-1, in contrast to the M2-like immunosuppressive shift in SARS-CoV-2. Noticeably, both acute infections had reduced CD14low/-CD16+ non-classical monocytes, with depletion of the population expressing Slan (6-sulfo LacNac), which is thought to contribute to immune surveillance through pro-inflammatory properties. This depletion indicates a potential role of these cells in acute viral infection, which has not previously been explored. The inflammatory state accompanied by the depletion of Slan+ monocytes may provide new insights on the critical events that determine the rate of viral set-point in acute HIV-1 infection and subsequent impact on transmission and reservoir establishment.This work was funded by the following grants from Fundação para a Ciência e a Tecnologia (FCT), Portugal, through “Apoio Especial Research4COVID-19”, project numbers 125 to S.M.F. and 803 to A.C.T. Fellowships funded by FCT (Doctorates4COVID-19, 2020.10202.BD), and Janssen-Cilag Farmacêutica were received by A.M.C.G. and G.B.F., respectively.info:eu-repo/semantics/publishedVersio
Recommended from our members
Challenges in QCD matter physics --The scientific programme of the Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sNN= 2.7--4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μB> 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter
- …