160 research outputs found
Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases
Phytocystatins are inhibitors of cysteine-proteases from plants putatively involved in plant defence based on their capability of inhibit heterologous enzymes. We have previously characterised the whole cystatin gene family members from barley (HvCPI-1 to HvCPI-13). The aim of this study was to assess the effects of barley cystatins on two phytophagous spider mites, Tetranychus urticae and Brevipalpus chilensis. The determination of proteolytic activity profile in both mite species showed the presence of the cysteine-proteases, putative targets of cystatins, among other enzymatic activities. All barley cystatins, except HvCPI-1 and HvCPI-7, inhibited in vitro mite cathepsin L- and/or cathepsin B-like activities, HvCPI-6 being the strongest inhibitor for both mite species. Transgenic maize plants expressing HvCPI-6 protein were generated and the functional integrity of the cystatin transgene was confirmed by in vitro inhibitory effect observed against T. urticae and B. chilensis protein extracts. Feeding experiments impaired on transgenic lines performed with T. urticae impaired mite development and reproductive performance. Besides, a significant reduction of cathepsin L-like and/or cathepsin B-like activities was observed when the spider mite fed on maize plants expressing HvCPI-6 cystatin. These findings reveal the potential of barley cystatins as acaricide proteins to protect plants against two important mite pests
Assessing the outcomes of participatory research: protocol for identifying, selecting, appraising and synthesizing the literature for realist review
<p>Abstract</p> <p>Background</p> <p>Participatory Research (PR) entails the co-governance of research by academic researchers and end-users. End-users are those who are affected by issues under study (<it>e.g.</it>, community groups or populations affected by illness), or those positioned to act on the knowledge generated by research (<it>e.g.</it>, clinicians, community leaders, health managers, patients, and policy makers). Systematic reviews assessing the generalizable benefits of PR must address: the diversity of research topics, methods, and intervention designs that involve a PR approach; varying degrees of end-user involvement in research co-governance, both within and between projects; and the complexity of outcomes arising from long-term partnerships.</p> <p>Methods</p> <p>We addressed the above mentioned challenges by adapting realist review methodology to PR assessment, specifically by developing inductively-driven identification, selection, appraisal, and synthesis procedures. This approach allowed us to address the non-uniformity and complexity of the PR literature. Each stage of the review involved two independent reviewers and followed a reproducible, systematic coding and retention procedure. Retained studies were completed participatory health interventions, demonstrated high levels of participation by non-academic stakeholders (<it>i.e.</it>, excluding studies in which end-users were not involved in co-governing throughout the stages of research) and contained detailed descriptions of the participatory process and context. Retained sets are being mapped and analyzed using realist review methods.</p> <p>Results</p> <p>The librarian-guided search string yielded 7,167 citations. A total of 594 citations were retained after the identification process. Eighty-three papers remained after selection. Principle Investigators (PIs) were contacted to solicit all companion papers. Twenty-three sets of papers (23 PR studies), comprising 276 publications, passed appraisal and are being synthesized using realist review methods.</p> <p>Discussion</p> <p>The systematic and stage-based procedure addressed challenges to PR assessment and generated our robust understanding of complex and heterogeneous PR practices. To date, realist reviews have focussed on evaluations of relatively uniform interventions. In contrast our PR search yielded a wide diversity of partnerships and research topics. We therefore developed tools to achieve conceptual clarity on the PR field, as a beneficial precursor to our theoretically-driven synthesis using realist methods. Findings from the ongoing review will be provided in forthcoming publications.</p
Pain as a global public health priority
<p>Abstract</p> <p>Background</p> <p>Pain is an enormous problem globally. Estimates suggest that 20% of adults suffer from pain globally and 10% are newly diagnosed with chronic pain each year. Nevertheless, the problem of pain has primarily been regarded as a medical problem, and has been little addressed by the field of public health.</p> <p>Discussion</p> <p>Despite the ubiquity of pain, whether acute, chronic or intermittent, public health scholars and practitioners have not addressed this issue as a public health problem. The importance of viewing pain through a public health lens allows one to understand pain as a multifaceted, interdisciplinary problem for which many of the causes are the social determinants of health. Addressing pain as a global public health issue will also aid in priority setting and formulating public health policy to address this problem, which, like most other chronic non-communicable diseases, is growing both in absolute numbers and in its inequitable distribution across the globe.</p> <p>Summary</p> <p>The prevalence, incidence, and vast social and health consequences of global pain requires that the public health community give due attention to this issue. Doing so will mean that health care providers and public health professionals will have a more comprehensive understanding of pain and the appropriate public health and social policy responses to this problem.</p
Hemagglutinin from the H5N1 Virus Activates Janus Kinase 3 to Dysregulate Innate Immunity
Highly pathogenic avian influenza viruses (HPAIVs) cause severe disease in humans. There are no effective vaccines or antiviral therapies currently available to control fatal outbreaks due in part to the lack of understanding of virus-mediated immunopathology. In our study, we used hemagglutinin (HA) of H5N1 virus to investigate the related signaling pathways and their relationship to dysregulated innate immune reaction. We found the HA of H5N1 avian influenza triggered an abnormal innate immune signalling in the pulmonary epithelial cells, through an unusual process involving activation of Janus kinase 3 (JAK3) that is exclusively associated with γc chain and is essential for signaling via all γc cytokine receptors. By using a selective JAK3 inhibitor and JAK3 knockout mice, we have, for the first time, demonstrated the ability to target active JAK3 to counteract injury to the lungs and protect immunocytes from acute hypercytokinemia -induced destruction following the challenge of H5N1 HA in vitro and in vivo. On the basis of the present data, it appears that the efficacy of selective JAK3 inhibition is likely based on its ability to block multiple cytokines and protect against a superinflammatory response to pathogen-associated molecular patterns (PAMPs) attack. Our findings highlight the potential value of selective JAK3 inhibitor in treating the fatal immunopathology caused by H5N1 challenge
Diversity of isoprene-degrading bacteria in phyllosphere and soil communities from a high isoprene-emitting environment: a Malaysian oil palm plantation
Background: Isoprene is the most abundantly produced biogenic volatile organic compound (BVOC) on Earth, with annual global emissions almost equal to those of methane. Despite its importance in atmospheric chemistry and climate, little is known about the biological degradation of isoprene in the environment. The largest source of isoprene is terrestrial plants, and oil palms, the cultivation of which is expanding rapidly, are among the highest isoprene-producing trees. Results: DNA stable isotope probing (DNA-SIP) to study the microbial isoprene-degrading community associated with oil palm trees revealed novel genera of isoprene-utilising bacteria including Novosphingobium, Pelomonas, Rhodoblastus, Sphingomonas and Zoogloea in both oil palm soils and on leaves. Amplicon sequencing of isoA genes, which encode the α-subunit of the isoprene monooxygenase (IsoMO), a key enzyme in isoprene metabolism, confirmed that oil palm trees harbour a novel diversity of isoA sequences. In addition, metagenome assembled genomes (MAGs) were reconstructed from oil palm soil and leaf metagenomes and putative isoprene degradation genes were identified. Analysis of unenriched metagenomes showed that isoA-containing bacteria are more abundant in soils than in the oil palm phyllosphere. Conclusion: This study greatly expands the known diversity of bacteria that can metabolise isoprene and contributes to a better understanding of the biological degradation of this important but neglected climate-active gas
Tailored design of NKT-stimulatory glycolipids for polarization of immune responses
Natural killer T (NKT) cell is a distinct population of T lymphocytes that can rapidly release massive amount of Th1 and Th2 cytokines upon the engagement of their T cell receptor with glycolipids presented by CD1d. The secreted cytokines can promote cell-mediated immunity to kill tumor cells and intracellular pathogens, or suppress autoreactive immune cells in autoimmune diseases. Thus, NKT cell is an attractive target for developing new therapeutics to manipulate immune system. The best-known glycolipid to activate NKT cells is α-galactosylceramide (α-GalCer), which has been used as a prototype for designing new NKT stimulatory glycolipids. Many analogues have been generated by modification of the galactosyl moiety, the acyl chain or the phytosphingosine chain of α-GalCer. Some of the analogues showed greater abilities than α-GalCer in polarizing immune responses toward Th1 or Th2 dominance. Among them, several analogues containing phenyl groups in the lipid tails were more potent in inducing Th1-skewed cytokines and exhibited greater anticancer efficacy than α-GalCer. Analyses of the correlation between structure and activity of various α-GalCer analogues on the activation of iNKT cell revealed that CD1d–glycolipid complexes interacted with the same population of iNKT cell expressing similar T-cell receptor Vβ as α-GalCer. On the other hand, those phenyl glycolipids with propensity for Th1 dominant responses showed greater binding avidity and stability than α-GalCer for iNKT T-cell receptor when complexed with CD1d. Thus, it is the avidity and stability of the ternary complexes of CD1d-glycolipid-iNKT TCR that dictate the polarity and potency of immune responses. These findings provide a key to the rationale design of immune modulating glycolipids with desirable Th1/Th2 polarity for clinical application. In addition, elucidation of α-GalCer-induced anergy, liver damage and accumulation of myeloid derived suppressor cells has offered explanation for its lacklustre anti-cancer activities in clinical trials. On other hand, the lack of such drawbacks in glycolipid analogues containing phenyl groups in the lipid tails of α-GalCer coupled with the greater binding avidity and stability of CD1d-glycolipid complex for iNKT T-cell receptor, account for their superior anti-cancer efficacy in tumor bearing mice. Further clinical development of these phenyl glycolipids is warranted
- …