1,309 research outputs found

    Ipl1/aurora kinase suppresses S-CDK-driven spindle formation during prophase I to ensure chromosome integrity during meiosis

    Get PDF
    Cells coordinate spindle formation with DNA repair and morphological modifications to chromosomes prior to their segregation to prevent cell division with damaged chromosomes. Here we uncover a novel and unexpected role for Aurora kinase in preventing the formation of spindles by Clb5-CDK (S-CDK) during meiotic prophase I and when the DDR is active in budding yeast. This is critical since S-CDK is essential for replication during premeiotic S-phase as well as double-strand break induction that facilitates meiotic recombination and, ultimately, chromosome segregation. Furthermore, we find that depletion of Cdc5 polo kinase activity delays spindle formation in DDR-arrested cells and that ectopic expression of Cdc5 in prophase I enhances spindle formation, when Ipl1 is depleted. Our findings establish a new paradigm for Aurora kinase function in both negative and positive regulation of spindle dynamics

    On the geometry of C^3/D_27 and del Pezzo surfaces

    Get PDF
    We clarify some aspects of the geometry of a resolution of the orbifold X = C3/D_27, the noncompact complex manifold underlying the brane quiver standard model recently proposed by Verlinde and Wijnholt. We explicitly realize a map between X and the total space of the canonical bundle over a degree 1 quasi del Pezzo surface, thus defining a desingularization of X. Our analysis relys essentially on the relationship existing between the normalizer group of D_27 and the Hessian group and on the study of the behaviour of the Hesse pencil of plane cubic curves under the quotient.Comment: 23 pages, 5 figures, 2 tables. JHEP style. Added references. Corrected typos. Revised introduction, results unchanged

    Internalization Dissociates β2-Adrenergic Receptors

    Get PDF
    G protein-coupled receptors (GPCRs) self-associate as dimers or higher-order oligomers in living cells. The stability of associated GPCRs has not been extensively studied, but it is generally thought that these receptors move between the plasma membrane and intracellular compartments as intact dimers or oligomers. Here we show that β2-adrenergic receptors (β2ARs) that self-associate at the plasma membrane can dissociate during agonist-induced internalization. We use bioluminescence-resonance energy transfer (BRET) to monitor movement of β2ARs between subcellular compartments. BRET between β2ARs and plasma membrane markers decreases in response to agonist activation, while at the same time BRET between β2ARs and endosome markers increases. Energy transfer between β2ARs is decreased in a similar manner if either the donor- or acceptor-labeled receptor is mutated to impair agonist binding and internalization. These changes take place over the course of 30 minutes, persist after agonist is removed, and are sensitive to several inhibitors of arrestin- and clathrin-mediated endocytosis. The magnitude of the decrease in BRET between donor- and acceptor-labeled β2ARs suggests that at least half of the receptors that contribute to the BRET signal are physically segregated by internalization. These results are consistent with the possibility that β2ARs associate transiently with each other in the plasma membrane, or that β2AR dimers or oligomers are actively disrupted during internalization

    Primary non Hodgkin's lymphoma of the lacrimal sac

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary Non Hodgkin's Lymphoma (NHL) of the lacrimal sac is rare.</p> <p>Methods</p> <p>The clinical features of a 78 year old female who presented with epiphora and swelling of the left lacrimal sac are described.</p> <p>Results</p> <p>Computerised tomography showed a mass involving the left lacrimal sac. Histopathological examination revealed a diffuse large B cell NHL. Immunohistological examination demonstrated B cell origin. Chemotherapy could not be administered due to co morbid conditions. The patient was treated with radiotherapy to a dose of 45 Gy in 25 fractions. Patient is disease free and on follow up after 36 months.</p> <p>Conclusion</p> <p>Primary radiotherapy is a treatment option with curative potential for localized NHL of the lacrimal sac and may be considered in patients who cannot tolerate appropriate chemotherapy.</p

    SAM Lectures on Extremal Black Holes in d=4 Extended Supergravity

    Full text link
    We report on recent results in the study of extremal black hole attractors in N=2, d=4 ungauged Maxwell-Einstein supergravities. For homogeneous symmetric scalar manifolds, the three general classes of attractor solutions with non-vanishing Bekenstein-Hawking entropy are discussed. They correspond to three (inequivalent) classes of orbits of the charge vector, which sits in the relevant symplectic representation R_{V} of the U-duality group. Other than the 1/2-BPS one, there are two other distinct non-BPS classes of charge orbits, one of which has vanishing central charge. The complete classification of the U-duality orbits, as well as of the moduli spaces of non-BPS attractors (spanned by the scalars which are not stabilized at the black hole event horizon), is also reviewed. Finally, we consider the analogous classification for N>2-extended, d=4 ungauged supergravities, in which also the 1/N-BPS attractors yield a related moduli space.Comment: 1+29 pages, 8 Tables. Contribution to the Proceedings of the School on Attractor Mechanism 2007 (SAM2007), June 18--22 2007, INFN--LNF, Frascati, Ital

    Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion

    Get PDF
    In a recent past, transposable elements (TEs) were referred to as selfish genetic components only capable of copying themselves with the aim of increasing the odds of being inherited. Nonetheless, TEs have been initially proposed as positive control elements acting in synergy with the host. Nowadays, it is well known that TE movement into host genome comprises an important evolutionary mechanism capable of increasing the adaptive fitness. As insights into TE functioning are increasing day to day, the manipulation of transposition has raised an interesting possibility of setting the host functions, although the lack of appropriate genome engineering tools has unpaved it. Fortunately, the emergence of genome editing technologies based on programmable nucleases, and especially the arrival of a multipurpose RNA-guided Cas9 endonuclease system, has made it possible to reconsider this challenge. For such purpose, a particular type of transposons referred to as miniature inverted-repeat transposable elements (MITEs) has shown a series of interesting characteristics for designing functional drivers. Here, recent insights into MITE elements and versatile RNA-guided CRISPR/Cas9 genome engineering system are given to understand how to deploy the potential of TEs for control of the host transcriptional activity.Fil: Vaschetto, Luis Maria Benjamin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Diversidad Animal I; Argentin

    Activation of Type 1 Cannabinoid Receptor (CB1R) promotes neurogenesis in murine subventricular zone cell cultures

    Get PDF
    The endocannabinoid system has been implicated in the modulation of adult neurogenesis. Here, we describe the effect of type 1 cannabinoid receptor (CB1R) activation on self-renewal, proliferation and neuronal differentiation in mouse neonatal subventricular zone (SVZ) stem/progenitor cell cultures. Expression of CB1R was detected in SVZ-derived immature cells (Nestin-positive), neurons and astrocytes. Stimulation of the CB1R by (R)-(+)-Methanandamide (R-m-AEA) increased self-renewal of SVZ cells, as assessed by counting the number of secondary neurospheres and the number of Sox2+/+ cell pairs, an effect blocked by Notch pathway inhibition. Moreover, R-m-AEA treatment for 48 h, increased proliferation as assessed by BrdU incorporation assay, an effect mediated by activation of MAPK-ERK and AKT pathways. Surprisingly, stimulation of CB1R by R-m-AEA also promoted neuronal differentiation (without affecting glial differentiation), at 7 days, as shown by counting the number of NeuN-positive neurons in the cultures. Moreover, by monitoring intracellular calcium concentrations ([Ca2+](i)) in single cells following KCl and histamine stimuli, a method that allows the functional evaluation of neuronal differentiation, we observed an increase in neuronal-like cells. This proneurogenic effect was blocked when SVZ cells were co-incubated with R-m-AEA and the CB1R antagonist AM 251, for 7 days, thus indicating that this effect involves CB1R activation. In accordance with an effect on neuronal differentiation and maturation, R-m-AEA also increased neurite growth, as evaluated by quantifying and measuring the number of MAP2-positive processes. Taken together, these results demonstrate that CB1R activation induces proliferation, self-renewal and neuronal differentiation from mouse neonatal SVZ cell cultures.Fundacao para a Ciencia e a Tecnologia - Portugal [POCTI/SAU-NEU/68465/2006, PTDC/SAU-NEU/104415/2008, PTDC/SAU-NEU/101783/2008, POCTI/SAU-NEU/110838/2009]; Fundacao Calouste Gulbenkian [96542]; Fundacao para a Ciencia e Tecnologiainfo:eu-repo/semantics/publishedVersio
    • …
    corecore