4,697 research outputs found
The space group classification of topological band insulators
Topological band insulators (TBIs) are bulk insulating materials which
feature topologically protected metallic states on their boundary. The existing
classification departs from time-reversal symmetry, but the role of the crystal
lattice symmetries in the physics of these topological states remained elusive.
Here we provide the classification of TBIs protected not only by time-reversal,
but also by crystalline symmetries. We find three broad classes of topological
states: (a) Gamma-states robust against general time-reversal invariant
perturbations; (b) Translationally-active states protected from elastic
scattering, but susceptible to topological crystalline disorder; (c) Valley
topological insulators sensitive to the effects of non-topological and
crystalline disorder. These three classes give rise to 18 different
two-dimensional, and, at least 70 three-dimensional TBIs, opening up a route
for the systematic search for new types of TBIs.Comment: Accepted in Nature Physic
Tunable Multifunctional Topological Insulators in Ternary Heusler Compounds
Recently the Quantum Spin Hall effect (QSH) was theoretically predicted and
experimentally realized in a quantum wells based on binary semiconductor
HgTe[1-3]. QSH state and topological insulators are the new states of quantum
matter interesting both for fundamental condensed matter physics and material
science[1-11]. Many of Heusler compounds with C1b structure are ternary
semiconductors which are structurally and electronically related to the binary
semiconductors. The diversity of Heusler materials opens wide possibilities for
tuning the band gap and setting the desired band inversion by choosing
compounds with appropriate hybridization strength (by lattice parameter) and
the magnitude of spin-orbit coupling (by the atomic charge). Based on the
first-principle calculations we demonstrate that around fifty Heusler compounds
show the band inversion similar to HgTe. The topological state in these
zero-gap semiconductors can be created by applying strain or by designing an
appropriate quantum well structure, similar to the case of HgTe. Many of these
ternary zero-gap semiconductors (LnAuPb, LnPdBi, LnPtSb and LnPtBi) contain the
rare earth element Ln which can realize additional properties ranging from
superconductivity (e. g. LaPtBi[12]) to magnetism (e. g. GdPtBi[13]) and
heavy-fermion behavior (e. g. YbPtBi[14]). These properties can open new
research directions in realizing the quantized anomalous Hall effect and
topological superconductors.Comment: 20 pages, 5 figure
Fake one-time pad cannot be used to improve the efficiency of quantum communication
Two misuses of one-time pad in improving the efficiency of quantum
communication are pointed out. One happens when using some message bits to
encrypt others, the other exists because the key bits are not truly random.
Both of them result in the decrease of security. Therefore, one-time pad should
be used carefully in designing quantum communication protocols.Comment: 6 pages, no figure
Gate-tuned normal and superconducting transport at the surface of a topological insulator
Three-dimensional topological insulators are characterized by the presence of
a bandgap in their bulk and gapless Dirac fermions at their surfaces. New
physical phenomena originating from the presence of the Dirac fermions are
predicted to occur, and to be experimentally accessible via transport
measurements in suitably designed electronic devices. Here we study transport
through superconducting junctions fabricated on thin Bi2Se3 single crystals,
equipped with a gate electrode. In the presence of perpendicular magnetic field
B, sweeping the gate voltage enables us to observe the filling of the Dirac
fermion Landau levels, whose character evolves continuously from electron- to
hole-like. When B=0, a supercurrent appears, whose magnitude can be gate tuned,
and is minimum at the charge neutrality point determined from the Landau level
filling. Our results demonstrate how gated nano-electronic devices give control
over normal and superconducting transport of Dirac fermions at an individual
surface of a three-dimensional topological insulator.Comment: 28 pages, 5 figure
Topological Crystalline Insulators in the SnTe Material Class
Topological crystalline insulators are new states of matter in which the
topological nature of electronic structures arises from crystal symmetries.
Here we predict the first material realization of topological crystalline
insulator in the semiconductor SnTe, by identifying its nonzero topological
index. We predict that as a manifestation of this nontrivial topology, SnTe has
metallic surface states with an even number of Dirac cones on high-symmetry
crystal surfaces such as {001}, {110} and {111}. These surface states form a
new type of high-mobility chiral electron gas, which is robust against disorder
and topologically protected by reflection symmetry of the crystal with respect
to {110} mirror plane. Breaking this mirror symmetry via elastic strain
engineering or applying an in-plane magnetic field can open up a continuously
tunable band gap on the surface, which may lead to wide-ranging applications in
thermoelectrics, infrared detection, and tunable electronics. Closely related
semiconductors PbTe and PbSe also become topological crystalline insulators
after band inversion by pressure, strain and alloying.Comment: submitted on Feb. 10, 2012; to appear in Nature Communications; 5
pages, 4 figure
Topological Surface States Protected From Backscattering by Chiral Spin Texture
Topological insulators are a new class of insulators in which a bulk gap for
electronic excitations is generated by strong spin orbit coupling. These novel
materials are distinguished from ordinary insulators by the presence of gapless
metallic boundary states, akin to the chiral edge modes in quantum Hall
systems, but with unconventional spin textures. Recently, experiments and
theoretical efforts have provided strong evidence for both two- and
three-dimensional topological insulators and their novel edge and surface
states in semiconductor quantum well structures and several Bi-based compounds.
A key characteristic of these spin-textured boundary states is their
insensitivity to spin-independent scattering, which protects them from
backscattering and localization. These chiral states are potentially useful for
spin-based electronics, in which long spin coherence is critical, and also for
quantum computing applications, where topological protection can enable
fault-tolerant information processing. Here we use a scanning tunneling
microscope (STM) to visualize the gapless surface states of the
three-dimensional topological insulator BiSb and to examine their scattering
behavior from disorder caused by random alloying in this compound. Combining
STM and angle-resolved photoemission spectroscopy, we show that despite strong
atomic scale disorder, backscattering between states of opposite momentum and
opposite spin is absent. Our observation of spin-selective scattering
demonstrates that the chiral nature of these states protects the spin of the
carriers; they therefore have the potential to be used for coherent spin
transport in spintronic devices.Comment: to be appear in Nature on August 9, 200
Mott physics and band topology in materials with strong spin-orbit interaction
Recent theory and experiment have revealed that strong spin-orbit coupling
can have dramatic qualitative effects on the band structure of weakly
interacting solids. Indeed, it leads to a distinct phase of matter, the
topological band insulator. In this paper, we consider the combined effects of
spin-orbit coupling and strong electron correlation, and show that the former
has both quantitative and qualitative effects upon the correlation-driven Mott
transition. As a specific example we take Ir-based pyrochlores, where the
subsystem of Ir 5d electrons is known to undergo a Mott transition. At weak
electron-electron interaction, we predict that Ir electrons are in a metallic
phase at weak spin-orbit interaction, and in a topological band insulator phase
at strong spin-orbit interaction. Very generally, we show that with increasing
strength of the electron-electron interaction, the effective spin-orbit
coupling is enhanced, increasing the domain of the topological band insulator.
Furthermore, in our model, we argue that with increasing interactions, the
topological band insulator is transformed into a "topological Mott insulator"
phase, which is characterized by gapless surface spin-only excitations. The
full phase diagram also includes a narrow region of gapless Mott insulator with
a spinon Fermi surface, and a magnetically ordered state at still larger
electron-electron interaction.Comment: 10+ pages including 3+ pages of Supplementary Informatio
One-dimensional Topological Edge States of Bismuth Bilayers
The hallmark of a time-reversal symmetry protected topologically insulating
state of matter in two-dimensions (2D) is the existence of chiral edge modes
propagating along the perimeter of the system. To date, evidence for such
electronic modes has come from experiments on semiconducting heterostructures
in the topological phase which showed approximately quantized values of the
overall conductance as well as edge-dominated current flow. However, there have
not been any spectroscopic measurements to demonstrate the one-dimensional (1D)
nature of the edge modes. Among the first systems predicted to be a 2D
topological insulator are bilayers of bismuth (Bi) and there have been recent
experimental indications of possible topological boundary states at their
edges. However, the experiments on such bilayers suffered from irregular
structure of their edges or the coupling of the edge states to substrate's bulk
states. Here we report scanning tunneling microscopy (STM) experiments which
show that a subset of the predicted Bi-bilayers' edge states are decoupled from
states of Bi substrate and provide direct spectroscopic evidence of their 1D
nature. Moreover, by visualizing the quantum interference of edge mode
quasi-particles in confined geometries, we demonstrate their remarkable
coherent propagation along the edge with scattering properties that are
consistent with strong suppression of backscattering as predicted for the
propagating topological edge states.Comment: 15 pages, 5 figures, and supplementary materia
Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure
The spin-orbit interaction affects the electronic structure of solids in
various ways. Topological insulators are one example where the spin-orbit
interaction leads the bulk bands to have a non-trivial topology, observable as
gapless surface or edge states. Another example is the Rashba effect, which
lifts the electron-spin degeneracy as a consequence of spin-orbit interaction
under broken inversion symmetry. It is of particular importance to know how
these two effects, i.e. the non-trivial topology of electronic states and
Rashba spin splitting, interplay with each other. Here we show, through
sophisticated first-principles calculations, that BiTeI, a giant bulk Rashba
semiconductor, turns into a topological insulator under a reasonable pressure.
This material is shown to exhibit several unique features such as, a highly
pressure-tunable giant Rashba spin splitting, an unusual pressure-induced
quantum phase transition, and more importantly the formation of strikingly
different Dirac surface states at opposite sides of the material.Comment: 5 figures are include
A topological Dirac insulator in a quantum spin Hall phase : Experimental observation of first strong topological insulator
When electrons are subject to a large external magnetic field, the
conventional charge quantum Hall effect \cite{Klitzing,Tsui} dictates that an
electronic excitation gap is generated in the sample bulk, but metallic
conduction is permitted at the boundary. Recent theoretical models suggest that
certain bulk insulators with large spin-orbit interactions may also naturally
support conducting topological boundary states in the extreme quantum limit,
which opens up the possibility for studying unusual quantum Hall-like phenomena
in zero external magnetic field. Bulk BiSb single crystals are
expected to be prime candidates for one such unusual Hall phase of matter known
as the topological insulator. The hallmark of a topological insulator is the
existence of metallic surface states that are higher dimensional analogues of
the edge states that characterize a spin Hall insulator. In addition to its
interesting boundary states, the bulk of BiSb is predicted to
exhibit three-dimensional Dirac particles, another topic of heightened current
interest. Here, using incident-photon-energy-modulated (IPEM-ARPES), we report
the first direct observation of massive Dirac particles in the bulk of
BiSb, locate the Kramers' points at the sample's boundary and
provide a comprehensive mapping of the topological Dirac insulator's gapless
surface modes. These findings taken together suggest that the observed surface
state on the boundary of the bulk insulator is a realization of the much sought
exotic "topological metal". They also suggest that this material has potential
application in developing next-generation quantum computing devices.Comment: 16 pages, 3 Figures. Submitted to NATURE on 25th November(2007
- …
