123 research outputs found

    Periodic solutions for some phi-Laplacian and reflection equations

    Get PDF
    This work is devoted to the study of the existence and periodicity of solutions of initial differential problems, paying special attention to the explicit computation of the period. These problems are also connected with some particular initial and boundary value problems with reflection, which allows us to prove existence of solutions of the latter using the existence of the formerThe work was partially supported by FEDER and Ministerio de Economía y Competitividad, Spain, project MTM2013-43014-P. The second author was supported by FPU scholarship, Ministerio de Educación, Cultura y Deporte, Spain and Xunta de Galicia (Spain), project EM2014/032S

    Camouflaging in a Complex Environment—Octopuses Use Specific Features of Their Surroundings for Background Matching

    Get PDF
    Living under intense predation pressure, octopuses evolved an effective and impressive camouflaging ability that exploits features of their surroundings to enable them to “blend in.” To achieve such background matching, an animal may use general resemblance and reproduce characteristics of its entire surroundings, or it may imitate a specific object in its immediate environment. Using image analysis algorithms, we examined correlations between octopuses and their backgrounds. Field experiments show that when camouflaging, Octopus cyanea and O. vulgaris base their body patterns on selected features of nearby objects rather than attempting to match a large field of view. Such an approach enables the octopus to camouflage in partly occluded environments and to solve the problem of differences in appearance as a function of the viewing inclination of the observer

    A review of the renal system and diurnal variations of renal activity in livestock

    Get PDF
    Kidneys are the main organs regulating water-electrolyte homeostasis in the body. They are responsible for maintaining the total volume of water and its distribution in particular water spaces, for electrolyte composition of systemic fluids and also for maintaining acid-base balance. These functions are performed by the plasma filtration process in renal glomeruli and the processes of active absorption and secretion in renal tubules, all adjusted to an 'activity-rest' rhythm. These diurnal changes are influenced by a 24-hour cycle of activity of hormones engaged in the regulation of renal activity. Studies on spontaneous rhythms of renal activity have been carried out mainly on humans and laboratory animals, but few studies have been carried out on livestock animals. Moreover, those results cover only some aspects of renal physiology. This review gives an overview of current knowledge concerning renal function and diurnal variations of some renal activity parameters in livestock, providing greater understanding of general chronobiological processes in mammals. Detailed knowledge of these rhythms is useful for clinical, practical and pharmacological purposes, as well as studies on their physical performance

    Entrainment of the Mammalian Cell Cycle by the Circadian Clock: Modeling Two Coupled Cellular Rhythms

    Get PDF
    The cell division cycle and the circadian clock represent two major cellular rhythms. These two periodic processes are coupled in multiple ways, given that several molecular components of the cell cycle network are controlled in a circadian manner. For example, in the network of cyclin-dependent kinases (Cdks) that governs progression along the successive phases of the cell cycle, the synthesis of the kinase Wee1, which inhibits the G2/M transition, is enhanced by the complex CLOCK-BMAL1 that plays a central role in the circadian clock network. Another component of the latter network, REV-ERBα, inhibits the synthesis of the Cdk inhibitor p21. Moreover, the synthesis of the oncogene c-Myc, which promotes G1 cyclin synthesis, is repressed by CLOCK-BMAL1. Using detailed computational models for the two networks we investigate the conditions in which the mammalian cell cycle can be entrained by the circadian clock. We show that the cell cycle can be brought to oscillate at a period of 24 h or 48 h when its autonomous period prior to coupling is in an appropriate range. The model indicates that the combination of multiple modes of coupling does not necessarily facilitate entrainment of the cell cycle by the circadian clock. Entrainment can also occur as a result of circadian variations in the level of a growth factor controlling entry into G1. Outside the range of entrainment, the coupling to the circadian clock may lead to disconnected oscillations in the cell cycle and the circadian system, or to complex oscillatory dynamics of the cell cycle in the form of endoreplication, complex periodic oscillations or chaos. The model predicts that the transition from entrainment to 24 h or 48 h might occur when the strength of coupling to the circadian clock or the level of growth factor decrease below critical values

    Positioning pharmacists’ roles in primary health care: a discourse analysis of the compensation plan in Alberta, Canada

    Full text link
    Abstract Background A comprehensive Compensation Plan for pharmacy services delivered by community pharmacists was implemented in Alberta, Canada in July 2012. Services covered by the Compensation Plan include care planning services, prescribing services such as adapting prescriptions, and administering a drug or publicly-funded vaccine by injection. Understanding how the Compensation Plan was framed and communicated provides insight into the roles of pharmacists and the potential influence of language on the implementation of services covered by the Compensation Plan by Albertan pharmacists. The objective of this study is to examine the positioning of pharmacists’ roles in documents used to communicate the Compensation Plan to Albertan pharmacists and other audiences. Methods Publicly available documents related to the Compensation Plan, such as news releases or reports, published between January 2012 and December 2015 were obtained from websites such as the Government of Alberta, Alberta Blue Cross, the Alberta College of Pharmacists, the Alberta Pharmacists’ Association, and the Blueprint for Pharmacy. Searches of the Canadian Newsstand database and Google identified additional documents. Discourse analysis was performed using social positioning theory to explore how pharmacists’ roles were constructed in communications about the Compensation Plan. Results In total, 65 publicly available documents were included in the analysis. The Compensation Plan was put forward as a framework for payment for professional services and formal legitimization of pharmacists’ changing professional roles. The discourse associated with the Compensation Plan positioned pharmacists’ roles as: (1) expanding to include services such as medication management for chronic diseases, (2) contributing to primary health care by providing access to services such as prescription renewals and immunizations, and (3) collaborating with other health care team members. Pharmacists’ changing roles were positioned in alignment with the aims of primary health care. Conclusions Social positioning theory provides a useful lens to examine the dynamic and evolving roles of pharmacists. This study provides insight into how communications regarding the Compensation Plan in Alberta, Canada positioned pharmacists’ changing roles in the broader context of changes to primary health care delivery. Our findings may be useful for other jurisdictions considering implementation of remunerated clinical services provided by pharmacists

    Structural Perturbations to Population Skeletons: Transient Dynamics, Coexistence of Attractors and the Rarity of Chaos

    Get PDF
    Simple models of insect populations with non-overlapping generations have been instrumental in understanding the mechanisms behind population cycles, including wild (chaotic) fluctuations. The presence of deterministic chaos in natural populations, however, has never been unequivocally accepted. Recently, it has been proposed that the application of chaos control theory can be useful in unravelling the complexity observed in real population data. This approach is based on structural perturbations to simple population models (population skeletons). The mechanism behind such perturbations to control chaotic dynamics thus far is model dependent and constant (in size and direction) through time. In addition, the outcome of such structurally perturbed models is [almost] always equilibrium type, which fails to commensurate with the patterns observed in population data.We present a proportional feedback mechanism that is independent of model formulation and capable of perturbing population skeletons in an evolutionary way, as opposed to requiring constant feedbacks. We observe the same repertoire of patterns, from equilibrium states to non-chaotic aperiodic oscillations to chaotic behaviour, across different population models, in agreement with observations in real population data. Model outputs also indicate the existence of multiple attractors in some parameter regimes and this coexistence is found to depend on initial population densities or the duration of transient dynamics. Our results suggest that such a feedback mechanism may enable a better understanding of the regulatory processes in natural populations

    SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair

    Get PDF
    The research leading to these results is supported by Cancer Research UK (XYG, RAB, EG, PM, PE, SG, C Santos, AJR, NM, PAB, AS and C Swanton), Breast Cancer Research Foundation (C Swanton and NK), Medical Research Council (ID: G0902275 to MG and C Santos; ID: G0701935/2 to AJR and C Swanton), the Danish Cancer Society (AMM, J Bartkova and J Bartek), the Lundbeck Foundation (R93-A8990 to J Bartek), the Ministry of the interior of the Czech Republic (grant VG20102014001 to MM and J Bartek), the National Program of Sustainability (grant LO1304 to MM and J Bartek), the Danish Council for Independent Research (grant DFF-1331-00262 to J Bartek), NIHR RMH/ICR Biomedical Research Centre for Cancer (JL), the EC Framework 7 (PREDICT 259303 to XYG, EG, PM, MG, TJ and C Swanton; DDResponse 259892 to J Bartek and J Bartkova and RESPONSIFY ID:259303 to C Swanton), UCL Overseas Research Scholarship (SG). C Swanton is also supported by the European Research Council, Rosetrees Trust and The Prostate Cancer Foundation. This research is supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre

    Metabolic responses to high pCO2 conditions at a CO2 vent site in juveniles of a marine isopod species assemblage

    Get PDF
    We are starting to understand the relationship between metabolic rate responses and species' ability to respond to exposure to high pCO2. However, most of our knowledge has come from investigations of single species. The examination of metabolic responses of closely related species with differing distributions around natural elevated CO2 areas may be useful to inform our understanding of their adaptive significance. Furthermore, little is known about the physiological responses of marine invertebrate juveniles to high pCO2, despite the fact they are known to be sensitive to other stressors, often acting as bottlenecks for future species success. We conducted an in situ transplant experiment using juveniles of isopods found living inside and around a high pCO2 vent (Ischia, Italy): the CO2 'tolerant' Dynamene bifida and 'sensitive' Cymodoce truncata and Dynamene torelliae. This allowed us to test for any generality of the hypothesis that pCO2 sensitive marine invertebrates may be those that experience trade-offs between energy metabolism and cellular homoeostasis under high pCO2 conditions. Both sensitive species were able to maintain their energy metabolism under high pCO2 conditions, but in C. truncata this may occur at the expense of [carbonic anhydrase], confirming our hypothesis. By comparison, the tolerant D. bifida appeared metabolically well adapted to high pCO2, being able to upregulate ATP production without recourse to anaerobiosis. These isopods are important keystone species; however, given they differ in their metabolic responses to future pCO2, shifts in the structure of the marine ecosystems they inhabit may be expected under future ocean acidification conditions
    corecore