648 research outputs found
Working with gardeners to identify potential invasive ornamental garden plants – testing a citizen science approach
The introduction and use of ornamental plants in gardens is the main pathway for plant invasions globally. High numbers of ornamental plants in gardens may not have started an invasion process yet and are a risk for possible future invasions. Gardeners could be among the first to notice plant traits that have also been recognised to contribute to the potential risk of ornamental plants to escape from cultivation. We asked gardeners in Britain to report ornamental plants that were spreading within their gardens and difficult to control using an online survey. Gardeners submitted 201 records of 121 species of which 104 are non-native in Britain. Most non-native species reported were already recorded and wide-spread in Britain outside cultivation, but about a third are not widely distributed, and eight species are not known outside cultivation. Gardeners’ control efforts were mainly directed to confine plants from further spread, but they also tried to eradicate many of the reported plants. Our results provide evidence that gardeners’ knowledge could help to identify potentially problematic invasive plants early in the invasion process. Even with low levels of participation all evidence collected would be very valuable in official risk management procedures as well as supporting legal obligations on early detection, surveillance and monitoring. At the same time, however, raising awareness of the problem by actively collaborating with gardeners could be of equal importance for the prevention of ornamental plant invasions in the future
A comparison between ultraviolet disinfection and copper alginate beads within a vortex bioreactor for the deactivation of bacteria in simulated waste streams with high levels of colour, humic acid and suspended solids.
We show in this study that the combination of a swirl flow reactor and an antimicrobial agent (in this case copper alginate beads) is a promising technique for the remediation of contaminated water in waste streams recalcitrant to UV-C treatment. This is demonstrated by comparing the viability of both common and UV-C resistant organisms in operating conditions where UV-C proves ineffective - notably high levels of solids and compounds which deflect UV-C. The swirl flow reactor is easy to construct from commonly available plumbing parts and may prove a versatile and powerful tool in waste water treatment in developing countries
Feasibility study of portable technology for weight loss and HbA1c control in type 2 diabetes
Background
The study investigated the feasibility of conducting a future Randomised Controlled Trial (RCT) of a mobile health (mHealth) intervention for weight loss and HbA1c reduction in Type 2 Diabetes Mellitus (T2DM).
Methods
The intervention was a small wearable mHealth device used over 12 weeks by overweight people with T2DM with the intent to lose weight and reduce their HbA1c level. A 4 week maintenance period using the device followed. The device records physical activity level and information about food consumption, and provides motivational feedback based on energy balance. Twenty-seven participants were randomised to receive no intervention; intervention alone; or intervention plus weekly motivational support. All participants received advice on diet and exercise at the start of the study. Weight and HbA1c levels were recorded at baseline and weeks 6, 12, and 16. Qualitative interviews were conducted with participants who received the intervention to explore their experiences of using the device and involvement in the study including the training received.
Results
Overall the device was perceived to be well-liked, acceptable, motivational and easy to use by participants. Some logistical changes were required during the feasibility study, including shortening of the study duration and relaxation of participant inclusion criteria. Descriptive statistics of weight and HbA1c data showed promising trends of weight loss and HbA1c reduction in both intervention groups, although this should be interpreted with caution.
Conclusions
A number of methodological recommendations for a future RCT emerged from the current feasibility study. The mHealth device was acceptable and promising for helping individuals with T2DM to reduce their HbA1c and lose weight. Devices with similar features should be tested further in larger studies which follow these methodological recommendations
Hollow Sodium Tungsten Bronze (Na0.15WO3) Nanospheres: Preparation, Characterization, and Their Adsorption Properties
We report herein a facile method for the preparation of sodium tungsten bronzes hollow nanospheres using hydrogen gas bubbles as reactant for chemical reduction of tungstate to tungsten and as template for the formation of hollow nanospheres at the same time. The chemical composition and the crystalline state of the as-prepared hollow Na0.15WO3nanospheres were characterized complementarily, and the hollow structure formation mechanism was proposed. The hollow Na0.15WO3nanospheres showed large Brunauer–Emment–Teller specific area (33.8 m2 g−1), strong resistance to acids, and excellent ability to remove organic molecules such as dye and proteins from aqueous solutions. These illustrate that the hollow nanospheres of Na0.15WO3should be a useful adsorbent
Artificial Neural Networks Versus Multiple Logistic Regression to Predict 30-Day Mortality After Operations For Type A Ascending Aortic Dissection§
There are few comparative reports on the overall accuracy of neural networks (NN), assessed only versus multiple logistic regression (LR), to predict events in cardiovascular surgery studies and none has been performed among acute aortic dissection (AAD) Type A patients. OBJECTIVES: We aimed at investigating the predictive potential of 30-day mortality by a large series of risk factors in AAD Type A patients comparing the overall performance of NN versus LR. METHODS: We investigated 121 plus 87 AAD Type A patients consecutively operated during 7 years in two Centres. Forced and stepwise NN and LR solutions were obtained and compared, using receiver operating characteristic area under the curve (AUC) and their 95% confidence intervals (CI) and Gini's coefficients. Both NN and LR models were re-applied to data from the second Centre to adhere to a methodological imperative with NN. RESULTS: Forced LR solutions provided AUC 87.9+/-4.1% (CI: 80.7 to 93.2%) and 85.7+/-5.2% (CI: 78.5 to 91.1%) in the first and second Centre, respectively. Stepwise NN solution of the first Centre had AUC 90.5+/-3.7% (CI: 83.8 to 95.1%). The Gini's coefficients for LR and NN stepwise solutions of the first Centre were 0.712 and 0.816, respectively. When the LR and NN stepwise solutions were re-applied to the second Centre data, Gini's coefficients were, respectively, 0.761 and 0.850. Few predictors were selected in common by LR and NN models: the presence of pre-operative shock, intubation and neurological symptoms, immediate post-operative presence of dialysis in continuous and the quantity of post-operative bleeding in the first 24 h. The length of extracorporeal circulation, post-operative chronic renal failure and the year of surgery were specifically detected by NN. CONCLUSIONS: Different from the International Registry of AAD, operative and immediate post-operative factors were seen as potential predictors of short-term mortality. We report a higher overall predictive accuracy with NN than with LR. However, the list of potential risk factors to predict 30-day mortality after AAD Type A by NN model is not enlarged significantly
The implementation of the serial trial intervention for pain and challenging behaviour in advanced dementia patients (STA OP!): a clustered randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Pain (physical discomfort) and challenging behaviour are highly prevalent in nursing home residents with dementia: at any given time 45-80% of nursing home residents are in pain and up to 80% have challenging behaviour. In the USA Christine Kovach developed the serial trial intervention (STI) and established that this protocol leads to less discomfort and fewer behavioural symptoms in moderate to severe dementia patients. The present study will provide insight into the effects of implementation of the Dutch version of the STI-protocol (STA OP!) in comparison with a control intervention, not only on behavioural symptoms, but also on pain, depression, and quality of life. This article outlines the study protocol.</p> <p>Methods/Design</p> <p>The study is a cluster randomized controlled trial in 168 older people (aged >65 years) with mild or moderate dementia living in nursing homes. The clusters, Dutch nursing homes, are randomly assigned to either the intervention condition (training and implementation of the STA OP!-protocol) or the control condition (general training focusing on challenging behaviour and pain, but without the step-wise approach). Measurements take place at baseline, after 3 months (end of the STA OP! training period) and after 6 months.</p> <p>Primary outcome measures are symptoms of challenging behaviour (measured with the Cohen-Mansfield Agitation Inventory (CMAI) and the Neuropsychiatric Inventory-Nursing Home version (NPI-NH)), and pain (measure with the Dutch version of the Pain Assessment Checklist for Seniors (PACSLAC-D) and the Minimum Data Set of the Resident Assessment Instrument (MDS-RAI) pain scale). Secondary outcome measures include symptoms of depression (Cornell and MDS-RAI depression scale), Quality of Live (Qualidem), changes in prescriptions of analgesics and psychotropic drugs, and the use of non-pharmacological comfort interventions (e.g. snoezelen, reminiscence therapy).</p> <p>Discussion</p> <p>The transfer from the American design to the Dutch design involved several changes due to the different organisation of healthcare systems. Specific strengths and limitations of the study are discussed.</p> <p>Trial registration</p> <p>Netherlands Trial Register (NTR): <a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=1967">NTR1967</a></p
First Sagittarius A* Event Horizon Telescope Results. VIII. Physical Interpretation of the Polarized Ring
In a companion paper, we present the first spatially resolved polarized image of Sagittarius A* on event horizon scales, captured using the Event Horizon Telescope, a global very long baseline interferometric array operating at a wavelength of 1.3 mm. Here we interpret this image using both simple analytic models and numerical general relativistic magnetohydrodynamic (GRMHD) simulations. The large spatially resolved linear polarization fraction (24%–28%, peaking at ∼40%) is the most stringent constraint on parameter space, disfavoring models that are too Faraday depolarized. Similar to our studies of M87*, polarimetric constraints reinforce a preference for GRMHD models with dynamically important magnetic fields. Although the spiral morphology of the polarization pattern is known to constrain the spin and inclination angle, the time-variable rotation measure (RM) of Sgr A* (equivalent to ≈46° ± 12° rotation at 228 GHz) limits its present utility as a constraint. If we attribute the RM to internal Faraday rotation, then the motion of accreting material is inferred to be counterclockwise, contrary to inferences based on historical polarized flares, and no model satisfies all polarimetric and total intensity constraints. On the other hand, if we attribute the mean RM to an external Faraday screen, then the motion of accreting material is inferred to be clockwise, and one model passes all applied total intensity and polarimetric constraints: a model with strong magnetic fields, a spin parameter of 0.94, and an inclination of 150°. We discuss how future 345 GHz and dynamical imaging will mitigate our present uncertainties and provide additional constraints on the black hole and its accretion flow
The persistent shadow of the supermassive black hole of M87: II. Model comparisons and theoretical interpretations
The Event Horizon Telescope (EHT) observation of M87∗ in 2018 has revealed a ring with a diameter that is consistent with the 2017 observation. The brightest part of the ring is shifted to the southwest from the southeast. In this paper, we provide theoretical interpretations for the multi-epoch EHT observations for M87∗ by comparing a new general relativistic magnetohydrodynamics model image library with the EHT observations for M87∗ in both 2017 and 2018. The model images include aligned and tilted accretion with parameterized thermal and nonthermal synchrotron emission properties. The 2018 observation again shows that the spin vector of the M87∗ supermassive black hole is pointed away from Earth. A shift of the brightest part of the ring during the multi-epoch observations can naturally be explained by the turbulent nature of black hole accretion, which is supported by the fact that the more turbulent retrograde models can explain the multi-epoch observations better than the prograde models. The EHT data are inconsistent with the tilted models in our model image library. Assuming that the black hole spin axis and its large-scale jet direction are roughly aligned, we expect the brightest part of the ring to be most commonly observed 90 deg clockwise from the forward jet. This prediction can be statistically tested through future observations
The putative center in NGC 1052
Context. Many active galaxies harbor powerful relativistic jets, however, the detailed mechanisms of their formation and acceleration remain poorly understood.
//
Aims. To investigate the area of jet acceleration and collimation with the highest available angular resolution, we study the innermost region of the bipolar jet in the nearby low-ionization nuclear emission-line region (LINER) galaxy NGC 1052.
//
Methods. We combined observations of NGC 1052 taken with VLBA, GMVA, and EHT over one week in the spring of 2017. Our study is focused on the size and continuum spectrum of the innermost region containing the central engine and the footpoints of both jets. We employed a synchrotron-self absorption model to fit the continuum radio spectrum and we combined the size measurements from close to the central engine out to ∼1 pc to study the jet collimation.
//
Results. For the first time, NGC 1052 was detected with the EHT, providing a size of the central region in-between both jet bases of 43 μas perpendicular to the jet axes, corresponding to just around 250 RS (Schwarzschild radii). This size estimate supports previous studies of the jets expansion profile which suggest two breaks of the profile at around 3 × 103 RS and 1 × 104 RS distances to the core. Furthermore, we estimated the magnetic field to be 1.25 Gauss at a distance of 22 μas from the central engine by fitting a synchrotron-self absorption spectrum to the innermost emission feature, which shows a spectral turn-over at ∼130 GHz. Assuming a purely poloidal magnetic field, this implies an upper limit on the magnetic field strength at the event horizon of 2.6 × 104 Gauss, which is consistent with previous measurements.
//
Conclusions. The complex, low-brightness, double-sided jet structure in NGC 1052 makes it a challenge to detect the source at millimeter (mm) wavelengths. However, our first EHT observations have demonstrated that detection is possible up to at least 230 GHz. This study offers a glimpse through the dense surrounding torus and into the innermost central region, where the jets are formed. This has enabled us to finally resolve this region and provide improved constraints on its expansion and magnetic field strength
Characterization of novel carcinoma cell lines for the analysis of therapeutical strategies fighting pancreatic cancer
- …
