28 research outputs found

    Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity

    Get PDF
    A major goal of biomedicine is to understand the function of every gene in the human genome. Loss-of-function mutations can disrupt both copies of a given gene in humans and phenotypic analysis of such 'human knockouts' can provide insight into gene function. Consanguineous unions are more likely to result in offspring carrying homozygous loss-of-function mutations. In Pakistan, consanguinity rates are notably high. Here we sequence the protein-coding regions of 10,503 adult participants in the Pakistan Risk of Myocardial Infarction Study (PROMIS), designed to understand the determinants of cardiometabolic diseases in individuals from South Asia. We identified individuals carrying homozygous predicted loss-of-function (pLoF) mutations, and performed phenotypic analysis involving more than 200 biochemical and disease traits. We enumerated 49,138 rare (<1% minor allele frequency) pLoF mutations. These pLoF mutations are estimated to knock out 1,317 genes, each in at least one participant. Homozygosity for pLoF mutations at PLA2G7 was associated with absent enzymatic activity of soluble lipoprotein-associated phospholipase A2; at CYP2F1, with higher plasma interleukin-8 concentrations; at TREH, with lower concentrations of apoB-containing lipoprotein subfractions; at either A3GALT2 or NRG4, with markedly reduced plasma insulin C-peptide concentrations; and at SLC9A3R1, with mediators of calcium and phosphate signalling. Heterozygous deficiency of APOC3 has been shown to protect against coronary heart disease; we identified APOC3 homozygous pLoF carriers in our cohort. We recruited these human knockouts and challenged them with an oral fat load. Compared with family members lacking the mutation, individuals with APOC3 knocked out displayed marked blunting of the usual post-prandial rise in plasma triglycerides. Overall, these observations provide a roadmap for a 'human knockout project', a systematic effort to understand the phenotypic consequences of complete disruption of genes in humans.D.S. is supported by grants from the National Institutes of Health, the Fogarty International, the Wellcome Trust, the British Heart Foundation, and Pfizer. P.N. is supported by the John S. LaDue Memorial Fellowship in Cardiology from Harvard Medical School. H.-H.W. is supported by a grant from the Samsung Medical Center, Korea (SMO116163). S.K. is supported by the Ofer and Shelly Nemirovsky MGH Research Scholar Award and by grants from the National Institutes of Health (R01HL107816), the Donovan Family Foundation, and Fondation Leducq. Exome sequencing was supported by a grant from the NHGRI (5U54HG003067-11) to S.G. and E.S.L. D.G.M. is supported by a grant from the National Institutes of Health (R01GM104371). J.D. holds a British Heart Foundation Chair, European Research Council Senior Investigator Award, and NIHR Senior Investigator Award. The Cardiovascular Epidemiology Unit at the University of Cambridge, which supported the field work and genotyping of PROMIS, is funded by the UK Medical Research Council, British Heart Foundation, and NIHR Cambridge Biomedical Research Centre ... Fieldwork in the PROMIS study has been supported through funds available to investigators at the Center for Non-Communicable Diseases, Pakistan and the University of Cambridge, UK

    Accelerated Partial Breast Irradiation: Association of Dosimetric Parameters With Patient-Reported Outcomes

    No full text
    Purpose: Accelerated partial breast irradiation (APBI) after breast-conserving surgery offers a well-tolerated adjuvant radiation therapy option for patients with breast cancer. We sought to describe patient-reported acute toxicity as a function of salient dosimetric parameters during and after an APBI regimen of 40 Gy in 10 once-daily fractions. Methods and Materials: From June 2019 to July 2020, patients undergoing APBI were assigned a weekly, response-adapted, patient reported outcomes-common terminology criteria for adverse events-based acute toxicity assessment. Patients reported acute toxicity during treatment and for up to 8 weeks after treatment. Dosimetric treatment parameters were collected. Descriptive statistics and univariable analyses were used to summarize patient-reported outcomes and their correlation to corresponding dosimetric measures, respectively. Results: Overall, 55 patients who received APBI completed a total of 351 assessments. Median planning target volume was 210 cc (range, 64-580 cc), and median planning target volume:ipsilateral breast volume ratio was 0.17 (range, 0.05-0.44). Overall, 22% of patients reported moderate breast enlargement and 27% reported maximum skin toxicity as severe or very severe. Furthermore, 35% of patients reported fatigue, and 44% of patients reported pain in the radiated area as moderate to very severe. Median time to first report of any moderate to very severe symptom was 10 days (interquartile range, 6-27 days). By 8 weeks after APBI, most patients reported resolution of symptoms, with 16% reporting residual moderate symptoms. Upon univariable analysis, none of the ascertained salient dosimetric parameters were associated with maximum symptoms or with the presence of moderate to very severe toxicity. Conclusions: Weekly assessments during and after APBI showed that patients experienced moderate to very severe toxicities, most commonly skin toxicity, but that these typically resolved by 8 weeks after radiation therapy. More comprehensive evaluations among larger cohorts are warranted to define the precise dosimetric parameters that correspond to outcomes of interest
    corecore