833 research outputs found

    The controversy in the ÎłÎłâ†’ÏÏ\gamma\gamma\to\rho\rho process: potential scattering or qqqˉqˉqq\bar{q}\bar{q} resonance ?

    Full text link
    The ÎłÎłâ†’Ï0ρ0→4π\gamma\gamma\to\rho^0\rho^0\to 4 \pi reaction shows a broad peak at 1.5 GeV in the (JP,Jz)=(2+,2)(J^P,J_z)=(2^+,2) channel which has no counterpart in the ρ+ρ−\rho^+\rho^- channel. This "resonance" is considered as a candidate for a qqqˉqˉqq\bar q\bar q state in the "s-channel". We show, however, that it can also be explained by potential scattering of ρ0ρ0\rho^0\rho^0 via the σ\sigma- exchange in the "t-channel".Comment: 12 pages, latex, 3 postscript figures, to appear in Zeitschrift fur Physi

    Motor Fatigue Measurement by Distance-Induced Slow Down of Walking Speed in Multiple Sclerosis

    Get PDF
    Background: Motor fatigue and ambulation impairment are prominent clinical features of people with multiple sclerosis (pMS). We hypothesized that a multimodal and comparative assessment of walking speed on short and long distance would allow a better delineation and quantification of gait fatigability in pMS. Objectives: To compare 4 walking paradigms: the timed 25-foot walk (T25FW), a corrected version of the T25FW with dynamic start (T25FW+), the timed 100-meter walk (T100MW) and the timed 500-meter walk (T500MW). Methods: Thirty controls and 81 pMS performed the 4 walking tests in a single study visit. Results: The 4 walking tests were performed with a slower WS in pMS compared to controls even in subgroups with minimal disability. The finishing speed of the last 100-meter of the T500MW was the slowest measurable WS whereas the T25FW+ provided the fastest measurable WS. The ratio between such slowest and fastest WS (Deceleration Index, DI) was significantly lower only in pMS with EDSS 4.0-6.0, a pyramidal or cerebellar functional system score reaching 3 or a maximum reported walking distance !4000m. Conclusion: The motor fatigue which triggers gait deceleration over a sustained effort in pMS can be measured by the WS ratio between performances on a very short distance and the finishing pace on a longer more demanding task. The absolute walking speed is abnormal early in MS whatever the distance of effort when patients are unaware of ambulation impairment. In contrast, the DI-measured ambulation fatigability appears to take place later in the disease course

    Reducing Constraints in a Higher Dimensional Extension of the Randall and Sundrum Model

    Get PDF
    In order to investigate the phenomenological implications of warped spaces in more than five dimensions, we consider a 4+1+ή4+1+\delta dimensional extension to the Randall and Sundrum model in which the space is warped with respect to a single direction by the presence of an anisotropic bulk cosmological constant. The Einstein equations are solved, giving rise to a range of possible spaces in which the ή\delta additional spaces are warped. Here we consider models in which the gauge fields are free to propagate into such spaces. After carrying out the Kaluza Klein (KK) decomposition of such fields it is found that the KK mass spectrum changes significantly depending on how the ή\delta additional dimensions are warped. We proceed to compute the lower bound on the KK mass scale from electroweak observables for models with a bulk SU(2)×U(1)SU(2)\times U(1) gauge symmetry and models with a bulk SU(2)R×SU(2)L×U(1)SU(2)_R\times SU(2)_L\times U(1) gauge symmetry. It is found that in both cases the most favourable bounds are approximately MKK≳2M_{KK}\gtrsim 2 TeV, corresponding to a mass of the first gauge boson excitation of about 4-6 TeV. Hence additional warped dimensions offer a new way of reducing the constraints on the KK scale.Comment: 27 pages, 15 figures, v3: Additional comments in sections 1, 2 and 4. New appendix added. Five additional figures. References adde

    D3-brane Potentials from Fluxes in AdS/CFT

    Get PDF
    We give a comprehensive treatment of the scalar potential for a D3-brane in a warped conifold region of a compactification with stabilized moduli. By studying general ultraviolet perturbations in supergravity, we systematically incorporate `compactification effects' sourced by supersymmetry breaking in the compact space. Significant contributions to the D3-brane potential, including the leading term in the infrared, arise from imaginary anti-self-dual (IASD) fluxes. For an arbitrary Calabi-Yau cone, we determine the most general IASD fluxes in terms of scalar harmonics, then compute the resulting D3-brane potential. Specializing to the conifold, we identify the operator dual to each mode of flux, and for chiral operators we confirm that the potential computed in the gauge theory matches the gravity result. The effects of four-dimensional curvature, including the leading D3-brane mass term, arise directly from the ten-dimensional equations of motion. Furthermore, we show that gaugino condensation on D7-branes provides a local source for IASD flux. This flux precisely encodes the nonperturbative contributions to the D3-brane potential, yielding a promising ten-dimensional representation of four-dimensional nonperturbative effects. Our result encompasses all significant contributions to the D3-brane potential discussed in the literature, and does so in the single coherent framework of ten-dimensional supergravity. Moreover, we identify new terms with irrational scaling dimensions that were inaccessible in prior works. By decoupling gravity in a noncompact configuration, then systematically reincorporating compactification effects as ultraviolet perturbations, we have provided an approach in which Planck-suppressed contributions to the D3-brane effective action can be computed.Comment: 70 page

    The Custodial Randall-Sundrum Model: From Precision Tests to Higgs Physics

    Full text link
    We reexamine the Randall-Sundrum (RS) model with enlarged gauge symmetry SU(2)_L x SU(2)_R x U(1)_X x P_LR in the presence of a brane-localized Higgs sector. In contrast to the existing literature, we perform the Kaluza-Klein (KK) decomposition within the mass basis, which avoids the truncation of the KK towers. Expanding the low-energy spectrum as well as the gauge couplings in powers of the Higgs vacuum expectation value, we obtain analytic formulas which allow for a deep understanding of the model-specific protection mechanisms of the T parameter and the left-handed Z-boson couplings. In particular, in the latter case we explain which contributions escape protection and identify them with the irreducible sources of P_LR symmetry breaking. We furthermore show explicitly that no protection mechanism is present in the charged-current sector confirming existing model-independent findings. The main focus of the phenomenological part of our work is a detailed discussion of Higgs-boson couplings and their impact on physics at the CERN Large Hadron Collider. For the first time, a complete one-loop calculation of all relevant Higgs-boson production and decay channels is presented, incorporating the effects stemming from the extended electroweak gauge-boson and fermion sectors.Comment: 74 pages, 13 figures, 3 tables. v2: Matches version published in JHE

    Fluids in cosmology

    Full text link
    We review the role of fluids in cosmology by first introducing them in General Relativity and then by applying them to a FRW Universe's model. We describe how relativistic and non-relativistic components evolve in the background dynamics. We also introduce scalar fields to show that they are able to yield an inflationary dynamics at very early times (inflation) and late times (quintessence). Then, we proceed to study the thermodynamical properties of the fluids and, lastly, its perturbed kinematics. We make emphasis in the constrictions of parameters by recent cosmological probes.Comment: 34 pages, 4 figures, version accepted as invited review to the book "Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment". Version 2: typos corrected and references expande

    Pregnancy and Maternal Behavior Induce Changes in Glia, Glutamate and Its Metabolism within the Cingulate Cortex

    Get PDF
    An upregulation of the astrocytic proteins GFAP and bFGF within area 2 of the cingulate cortex (Cg2) occurs within 3 hours of parturition in rats. These changes are the result of an interaction between hormonal state and maternal experience and are associated with increased dendritic spine density in this area. Here, we examined whether this upregulation of astrocytic proteins generalized to other glial markers and, in particular those associated with glutamate metabolism. We chose glial markers commonly used to reflect different aspects of glial function: vimentin, like GFAP, is a marker of intermediate filaments; glutamine synthetase (GS), and S-100beta, are used as markers for mature astrocytes and GS has also been used as a specific marker for glutamatergic enzymatic activity. In addition, we examined levels of proteins associated with glutamine synthetase, glutamate, glutamine and two excitatory amino acid transporters found in astrocytes, glt-1 and glast. S100beta immunoreactivity did not vary with reproductive state in either Cg2 or MPOA suggesting no change in the number of mature astrocytes across these conditions. Vimentin-ir did not differ across groups in Cg2, but expression of this protein decreased from Day 1 postpartum onwards in the MPOA. By contrast, GS-ir was increased within 24 h postpartum in Cg2 but not MPOA and similarly to GFAP and bFGF this upregulation of GS resulted from an interaction between hormonal state and maternal experience. Within Cg2, upregulation of GS was not accompanied by changes in the astrocytic glutamatergic transporters, glt-1 and glast, however, an increase in both glutamate and glutamine proteins were observed within the Cg2 of postpartum animals. Together, these changes suggest postpartum upregulation of glutamatergic activity and metabolism within Cg2 that is stimulated by pregnancy hormones and maternal experience

    Microwave studies of the fractional Josephson effect in HgTe-based Josephson junctions

    Full text link
    The rise of topological phases of matter is strongly connected to their potential to host Majorana bound states, a powerful ingredient in the search for a robust, topologically protected, quantum information processing. In order to produce such states, a method of choice is to induce superconductivity in topological insulators. The engineering of the interplay between superconductivity and the electronic properties of a topological insulator is a challenging task and it is consequently very important to understand the physics of simple superconducting devices such as Josephson junctions, in which new topological properties are expected to emerge. In this article, we review recent experiments investigating topological superconductivity in topological insulators, using microwave excitation and detection techniques. More precisely, we have fabricated and studied topological Josephson junctions made of HgTe weak links in contact with two Al or Nb contacts. In such devices, we have observed two signatures of the fractional Josephson effect, which is expected to emerge from topologically-protected gapless Andreev bound states. We first recall the theoretical background on topological Josephson junctions, then move to the experimental observations. Then, we assess the topological origin of the observed features and conclude with an outlook towards more advanced microwave spectroscopy experiments, currently under development.Comment: Lectures given at the San Sebastian Topological Matter School 2017, published in "Topological Matter. Springer Series in Solid-State Sciences, vol 190. Springer

    Voluntary motor drive: possible reduction in Tourette syndrome

    Get PDF
    Electrophysiologically, Tourette syndrome (TS) is characterized by shortened cortical silent period (CSP), reflecting decreased motor inhibition. However, voluntary versus involuntary aspects of inhibitory functions in TS are not well understood. Hence, investigating voluntary motor drive (VMD) could help to elucidate this issue. A group of 14 healthy adolescents was compared with subjects of same age suffering from TS with (N = 6) and without (N = 6) presence of distal tics. Basic resting and active motor thresholds (RMT and AMT, respectively) as well as suprathreshold transcranial magnetic stimulation-conditioned RMT and AMT were determined during the CSP. The difference between AMT and RMT was considered as VMD quantum. No group-differences were found in RMT or AMT. Subjects with distal tics showed reduced VMD compared to healthy controls while patients without distal tics did not differ from controls. In the second half of CSP, patients with distal tics showed also diminished VMD compared to tic-patients without distal tics. The findings support the notion, that TS shows possible reduction of VMD and is associated with central motor threshold alterations confined to the very motor networks related to the tics observed

    Search for supersymmetric particles in scenarios with a gravitino LSP and stau NLSP

    Get PDF
    Sleptons, neutralinos and charginos were searched for in the context of scenarios where the lightest supersymmetric particle is the gravitino. It was assumed that the stau is the next-to-lightest supersymmetric particle. Data collected with the DELPHI detector at a centre-of-mass energy near 189 GeV were analysed combining the methods developed in previous searches at lower energies. No evidence for the production of these supersymmetric particles was found. Hence, limits were derived at 95% confidence level.Comment: 31 pages, 14 figure
    • 

    corecore