810 research outputs found

    Low-noise AlGaAsSb avalanche photodiodes for 1550 nm light detection

    Get PDF
    Avalanche photodiodes (APD) can improve the signal to noise ratio in applications such as LIDAR, range finding and optical time domain reflectometry. However, APDs operating at eye-safe wavelengths around 1550 nm currently limit the sensitivity because the APDs’ impact ionization coefficients in the avalanche layers are too similar, leading to poor excess noise performance. The material AlGaAsSb has highly dissimilar impact ionization coefficients (with electrons dominating the avalanche gain) so is an excellent avalanche material for 1550 nm wavelength APDs. We previously reported a 1550 nm wavelength AlGaAsSb SAM APD with extremely low excess noise factors, 1.93 at a gain of 10 and 2.94 at a gain of 20. Using a more optimized design, we have now realized an AlGaAsSb SAM APD with a lower dark current (7 nA at a gain of 10 from a 230 μm diameter APD), a higher responsivity (0.97 A/W) and a lower excess noise (1.9 at a gain of 40), compared to our previous SAM APD. Noise-equivalent-power (NEP) measurements of our APD with a simple transimpedance amplifier circuit produced an NEP 12 times lower than a state-of-the-art APD under identical test conditions, confirming the advantage of low-noise AlGaAsSb SAM APDs

    Penta-quark states with hidden charm and beauty

    Full text link
    More and more hadron states are found to be difficult to be accommodated by the quenched quark models which describe baryons as 3-quark states and mesons as antiquark-quark states. Dragging out an antiquark-quark pair from the gluon field in hadrons should be an important excitation mechanism for hadron spectroscopy. Our recent progress on the penta-quark states with hidden charm and beauty is reviewed.Comment: Plenary talk at the 5th Asia-Pacific Conference on Few-Body Problems in Physics 2011 (APFB2011), 22-26 Aug., 2011, Seoul, Kore

    Mechanisms for χcJϕϕ\chi_{cJ}\to \phi\phi Decays

    Full text link
    Exclusive decays of χcJ(J=0,2)\chi_{cJ}(J=0,2) into ϕϕ\phi\phi are investigated in the framework of perturbative quantum chromodynamics(pQCD) and \tpz quark pair creation model. The results show that these two mechanisms exhibit a quite different behavior in evaluating the decay width for the χc0\chi_{c0} and χc2\chi_{c2}. In pQCD method with nonrelativistic(NR) approximation, while the calculated \cxpp{2} decay width is comparable with measured one, the result for the \cxpp{0} decay width is suppressed and much smaller than experimental value. However, in \tpz quark pair creation model, the situation is reversed: the decay width of \cxpp{0} is greatly enhanced and can reproduce the large measured value, while the contribution to the \cxpp{2} decay width is small. The results suggest that while the pQCD mechanism is the dominant mechanism for \cxpp{2} decay, the \tpz quark pair creation mechanism is the dominant one for \cxpp{0} decay.Comment: 10 pages, 2 figure

    Quantum algebra in the mixed light pseudoscalar meson states

    Full text link
    In this paper, we investigate the entanglement degrees of pseudoscalar meson states via quantum algebra Y(su(3)). By making use of transition effect of generators J of Y(su(3)), we construct various transition operators in terms of J of Y(su(3)), and act them on eta-pion-eta mixing meson state. The entanglement degrees of both the initial state and final state are calculated with the help of entropy theory. The diagrams of entanglement degrees are presented. Our result shows that a state with desired entanglement degree can be achieved by acting proper chosen transition operator on an initial state. This sheds new light on the connect among quantum information, particle physics and Yangian algebra.Comment: 9 pages, 3 figure

    Two component dark matter

    Full text link
    We explain the PAMELA positron excess and the PPB-BETS/ATIC e+ + e- data using a simple two component dark matter model (2DM). The two particle species in the dark matter sector are assumed to be in thermal equilibrium in the early universe. While one particle is stable and is the present day dark matter, the second one is metastable and decays after the universe is 10^-8 s old. In this model it is simple to accommodate the large boost factors required to explain the PAMELA positron excess without the need for large spikes in the local dark matter density. We provide the constraints on the parameters of the model and comment on possible signals at future colliders.Comment: 6 pages, 2 figures, discussion clarified and extende

    Influence of the starting composition on the structural and superconducting properties of MgB2 phase

    Full text link
    We report the preparation of Mg1x_{1-x}B2_{2} (0\lex\le0.5) compounds with the nominal compositions. Single phase MgB2_{2} was obtained for x=0 sample. For 0<<x\le0.5, MgB4_{4} coexists with "MgB2_{2}" and the amount of MgB4_{4} increases with x. With the increase of x, the lattice parameter c{\it c} of "MgB2_{2}" increases and the lattice parameter a{\it a} decreases, correspondingly Tc_{c} of Mg1x_{1-x}B2_{2} decreases. The results were discussed in terms of the presence of Mg vacancies or B interstitials in the MgB2_{2} structure. This work is helpful to the understanding of the MgB2_{2} films with different Tc_{c}, as well as the Mg site doping effect for MgB2_{2}.Comment: 11 pages, 4 figure

    Finite-time destruction of entanglement and non-locality by environmental influences

    Full text link
    Entanglement and non-locality are non-classical global characteristics of quantum states important to the foundations of quantum mechanics. Recent investigations have shown that environmental noise, even when it is entirely local in influence, can destroy both of these properties in finite time despite giving rise to full quantum state decoherence only in the infinite time limit. These investigations, which have been carried out in a range of theoretical and experimental situations, are reviewed here.Comment: 27 pages, 6 figures, review article to appear in Foundations of Physic

    CUORE: The first bolometric experiment at the ton scale for the search for neutrino-less double beta decay

    Get PDF
    The Cryogenic Underground Observatory for Rare Events (CUORE) is the most massive bolometric experiment searching for neutrino-less double beta (0νββ) decay. The detector consists of an array of 988 TeO crystals (742 kg) arranged in a compact cylindrical structure of 19 towers. This paper will describe the CUORE experiment, including the cryostat, and present the detector performance during the first year of running. Additional detail will describe the effort made in improving the energy resolution in the Te 0νββ decay region of interest (ROI) and the suppression of backgrounds. A description of work to lower the energy threshold in order to give CUORE the sensitivity to search for other rare events, such as dark matter, will also be provided. 2 13

    Perspectives of lowering CUORE thresholds with Optimum Trigger

    Get PDF
    CUORE is a cryogenic experiment that focuses on the search of neutrinoless double beta decay in 130Te and it is located at the Gran Sasso National Laboratories. Its detector consists of 988 TeO2 crystals operating at a base temperature of ~10 mK. It is the first ton-scale bolometric experiment ever realized for this purpose. Thanks to its large target mass and ultra-low background, the CUORE detector is also suitable for the search of other rare phenomena. In particular the low energy part of the spectra is interesting for the detection of WIMP-nuclei scattering reactions. One of the most important requirements to perform these studies is represented by the achievement of a stable energy threshold lower than 10 keV. Here, the CUORE capability to accomplish this purpose using a low energy software trigger will be presented and described
    corecore