88 research outputs found
Characterization and identification of dityrosine cross-linked peptides using tandem mass spectrometry
The use of mass spectrometry coupled with chemical cross-linking of proteins has become a powerful tool for proteins structure and interactions studies. Unlike structural analysis of proteins using chemical reagents specific for lysine or cysteine residues, identification of gas-phase fragmentation patterns of endogenous dityrosine cross-linked peptides have not been investigated. Dityrosine cross-linking in proteins and peptides are clinical markers of oxidative stress, aging, and neurodegenerative diseases including Alzheimer’s disease and Parkinson’s disease. In this study, we investigated and characterized the fragmentation pattern of a synthetically prepared dityrosine cross-linked dimer of Aβ(1–16) using ESI tandem mass spectrometry. We then detailed the fragmentation pattern of dityrosine cross-linked Aβ(1–16), using collision induced dissociation (CID), higher-energy collision induced dissociation (HCD), electron transfer dissociation (ETD), and electron capture dissociation (ECD). Application of these generic fragmentation rules of dityrosine cross-linked peptides allowed for the identification of dityrosine cross-links in peptides of Aβ and α-synuclein generated in vitro by enzymatic peroxidation. We report, for the first time, the dityrosine cross-linked residues in human hemoglobin and α-synuclein under oxidative conditions. Together these tools open up the potential for automated analysis of this naturally occurring post-translation modification in neurodegenerative diseases as well as other pathological conditions
Allan Sandage and the Cosmic Expansion
This is an account of Allan Sandage's work on (1) The character of the
expansion field. For many years he has been the strongest defender of an
expanding Universe. He later explained the CMB dipole by a local velocity of
220 +/- 50 km/s toward the Virgo cluster and by a bulk motion of the Local
supercluster (extending out to ~3500 km/s) of 450-500 km/s toward an apex at
l=275, b=12. Allowing for these streaming velocities he found linear expansion
to hold down to local scales (~300 km/s). (2) The calibration of the Hubble
constant. Probing different methods he finally adopted - from
Cepheid-calibrated SNe Ia and from independent RR Lyr-calibrated TRGBs - H_0 =
62.3 +/- 1.3 +/- 5.0 km/s/Mpc.Comment: 12 pages, 11 figures, 1 table, Submitted to Astrophysics and Space
Science, Special Issue on the Fundamental Cosmic Distance Scale in the Gaia
Er
Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume
The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes
Paths to Förster’s resonance energy transfer (FRET) theory
Theodor Förster (1910–1974) developed a phenomenological theory of nonradiative resonance
energy transfer which proved to be transformative in the fields of chemistry,
biochemistry, and biology. This paper explores the experimental and the theoretical
antecedents of Förster’s theory of resonance energy transfer (FRET). Early studies of
sensitized fluorescence, fluorescence depolarization, and photosynthesis demonstrated the
phenomena of long-range energy transfer. At the same time physicists developed theoretical
models which contained common physical mechanisms and parameters: oscillating dipoles as
models for the atoms or molecules, dipole-dipole coupling for the interaction, and a
distance R0 that is optimal for resonance energy transfer.
Early theories predicted R0 that was too large as compared to
experiments. Finally, in 1946 Förster developed a classical theory and in 1948 he
developed a quantum mechanical theory; both theories predicted an inverse sixth power
dependence of the rate of energy transfer and a R0 that agreed
with experiments. This paper attempts to determine why Förster succeeded when the other
theoreticians failed to develop the correct theory. The putative roles of
interdisciplinary education and collaborative research are discussed. Furthermore, I
explore the role of science journals and their specific audiences in the popularization of
FRET to a broad interdisciplinary community
A six-metabolite panel as potential blood-based biomarkers for Parkinson’s disease
Characterisation and diagnosis of idiopathic Parkinson’s disease (iPD) is a current challenge that hampers both clinical assessment and clinical trial development with the potential inclusion of non-PD cases. Here, we used a targeted mass spectrometry approach to quantify 38 metabolites extracted from the serum of 231 individuals. This cohort is currently one of the largest metabolomic studies including iPD patients, drug-naïve iPD, healthy controls and patients with Alzheimer’s disease as a disease-specific control group. We identified six metabolites (3-hydroxykynurenine, aspartate, beta-alanine, homoserine, ornithine (Orn) and tyrosine) that are significantly altered between iPD patients and control participants. A multivariate model to predict iPD from controls had an area under the curve (AUC) of 0.905, with an accuracy of 86.2%. This panel of metabolites may serve as a potential prognostic or diagnostic assay for clinical trial prescreening, or for aiding in diagnosing pathological disease in the clinic
- …