142 research outputs found

    Dynamics and the gauge/gravity duality

    Get PDF
    De snaartheorie is de laatste jaren meer en meer een volwaardige tak van onderzoek geworden binnen de theoretische natuurkunde. Een belangrijke doorbraak in de snaartheorie was een concrete implementatie van het zogeheten holografisch principe. In essentie dicteert dit principe dat één dimensie van de ruimtetijd eigenlijk overbodig is in onze beschrijving ervan, net zoals een hologram een driedimensionaal beeld vastlegt op een plat vlak. Hoe dit ‘vergeten' van een dimensie in detail werkt was echter tot dusver alleen duidelijk in evenwichtssituaties. Balt van Rees ontwikkelde in detail de consequenties van het holografisch principe voor niet-evenwichtssituaties. Uiteindelijk moet dit leiden tot een holografische beschrijving van dynamische verschijnselen zoals de explosie van een ster of de vorming van een zwart gat

    Conformal invariance in the long-range Ising model

    Get PDF
    We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest

    The N=2 superconformal bootstrap

    Get PDF
    In this work we initiate the conformal bootstrap program for N=2N=2 super-conformal field theories in four dimensions. We promote an abstract operator-algebraic viewpoint in order to unify the description of Lagrangian and non-Lagrangian theories, and formulate various conjectures concerning the landscape of theories. We analyze in detail the four-point functions of flavor symmetry current multiplets and of N=2N=2 chiral operators. For both correlation functions we review the solution of the superconformal Ward identities and describe their superconformal block decompositions. This provides the foundation for an extensive numerical analysis discussed in the second half of the paper. We find a large number of constraints for operator dimensions, OPE coefficients, and central charges that must hold for any N=2N=2 superconformal field theory

    Real-time gauge/gravity duality: Prescription, Renormalization and Examples

    Full text link
    We present a comprehensive analysis of the prescription we recently put forward for the computation of real-time correlation functions using gauge/gravity duality. The prescription is valid for any holographic supergravity background and it naturally maps initial and final data in the bulk to initial and final states or density matrices in the field theory. We show in detail how the technique of holographic renormalization can be applied in this setting and we provide numerous illustrative examples, including the computation of time-ordered, Wightman and retarded 2-point functions in Poincare and global coordinates, thermal correlators and higher-point functions.Comment: 85 pages, 13 figures; v2: added comments and reference

    Heavy quark in an expanding plasma in AdS/CFT

    Full text link
    Using the Janik-Peschanski dual to a Bjorken flow, a Langevin equation is derived for a heavy quark in an expanding N = 4 supersymmetric Yang-Mills plasma. Such a plasma is characterized by a proper-time dependence of the temperature and corresponds to a system out of equilibrium. The analysis first focuses on a quark at rest in the plasma comoving frame. The case of a quark moving across a longitudinally expanding plasma is then considered. The two-point functions for the random noise acting on such heavy quark probes are computed.Comment: 17 pages. v2: references added; improved comments on the Schwinger-Keldysh formalis

    Nitrous oxide emissions from European agriculture - An analysis of variability and drivers of emissions from field experiments

    Get PDF
    Nitrous oxide emissions from a network of agricultural experiments in Europe were used to explore the relative importance of site and management controls of emissions. At each site, a selection of management interventions were compared within replicated experimental designs in plot-based experiments. Arable experiments were conducted at Beano in Italy, El Encin in Spain, Foulum in Denmark, Logården in Sweden, Maulde in Belgium, Paulinenaue in Germany, and Tulloch in the UK. Grassland experiments were conducted at Crichton, Nafferton and Peaknaze in the UK, Gödöllö in Hungary, Rzecin in Poland, Zarnekow in Germany and Theix in France. Nitrous oxide emissions were measured at each site over a period of at least two years using static chambers. Emissions varied widely between sites and as a result of manipulation treatments. Average site emissions (throughout the study period) varied between 0.04 and 21.21 kg N<sub>2</sub>O-N ha<sup>−1</sup> yr<sup>−1</sup>, with the largest fluxes and variability associated with the grassland sites. Total nitrogen addition was found to be the single most important determinant of emissions, accounting for 15% of the variance (using linear regression) in the data from the arable sites (<i>p</i> < 0.0001), and 77% in the grassland sites. The annual emissions from arable sites were significantly greater than those that would be predicted by IPCC default emission factors. Variability of N<sub>2</sub>O emissions within sites that occurred as a result of manipulation treatments was greater than that resulting from site-to-site and year-to-year variation, highlighting the importance of management interventions in contributing to greenhouse gas mitigation

    Globular cluster luminosity function as distance indicator

    Full text link
    Globular clusters are among the first objects used to establish the distance scale of the Universe. In the 1970-ies it has been recognized that the differential magnitude distribution of old globular clusters is very similar in different galaxies presenting a peak at M_V ~ -7.5. This peak magnitude of the so-called Globular Cluster Luminosity Function has been then established as a secondary distance indicator. The intrinsic accuracy of the method has been estimated to be of the order of ~0.2 mag, competitive with other distance determination methods. Lately the study of the Globular Cluster Systems has been used more as a tool for galaxy formation and evolution, and less so for distance determinations. Nevertheless, the collection of homogeneous and large datasets with the ACS on board HST presented new insights on the usefulness of the Globular Cluster Luminosity Function as distance indicator. I discuss here recent results based on observational and theoretical studies, which show that this distance indicator depends on complex physics of the cluster formation and dynamical evolution, and thus can have dependencies on Hubble type, environment and dynamical history of the host galaxy. While the corrections are often relatively small, they can amount to important systematic differences that make the Globular Cluster Luminosity Function a less accurate distance indicator with respect to some other standard candles.Comment: Accepted for publication in Astrophysics and Space Science. Review paper based on the invited talk at the conference "The Fundamental Cosmic Distance Scale: State of the Art and Gaia Perspective", Naples, May 2011. (13 pages, 8 figures
    corecore