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Abstract

We consider the question of conformal invariance of the long-range Ising model at the critical point. 
The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor 
invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. 
We however show that several correlation functions, computed to second order in the epsilon expansion, are 
nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all 
orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory 
in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional 
short-range Ising model is also included and may be of independent interest.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

We will be studying the long-range Ising (LRI) model—a close cousin of the usual, short-
range, Ising model (SRI). While in the SRI only nearest-neighbor spins interact, the LRI energy 
involves interactions at arbitrary distances with a powerlaw potential:
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Fig. 1. The three phases for the LRI critical point. The boundaries are σ = d/2 (straight solid) and σ = 2 − ηSRI(d)

(curved dashed, interpolated using the known exact ηSRI(d) for d = 1, 2, 4 and numerical values from the ε-expansion 
[1] and the conformal bootstrap [2] for a few intermediate d). Here we will be working near the boundary σ = d/2.

HLRI = −J
∑
i,j

sisj /rd+σ
ij , (1.1)

where d is the space dimensionality, and σ > 0 is a free parameter. The sum is over all pairs of 
lattice sites and rij is the distance between them. We are considering the ferromagnetic interac-
tion case J > 0.

Just like the SRI, the LRI has a second-order phase transition at a critical temperature T = Tc. 
The critical theory is universal, i.e. independent of the short-distance details such as the choice 
of the lattice. It has however an interesting dependence on σ (see Fig. 1):

1. For σ < d/2, the critical point is a Gaussian theory described by the nonlocal action involv-
ing the “fractional Laplacian” operator Lσ ≡ (− ∂2)σ/2:

S0 =
∫

ddx ddy φ(x)φ(y)/|x − y|d+σ ∝
∫

ddx φLσ φ . (1.2)

The field φ represents the spin density, and its scaling dimension is read off as

�φ = (d − σ)/2 . (1.3)

Composite operators can be built out of φ by differentiations and taking normal-ordered 
products. Since the theory is Gaussian, there are no anomalous dimensions.

2. For d/2 < σ < σ∗, the critical point is a nontrivial, non-Gaussian, theory, whose field-
theoretic description can be obtained by perturbing the nonlocal action S0 by a local quartic 
interaction 

∫
ddx φ4(x). In the range σ > d/2 this interaction is relevant and generates a 

renormalization group (RG) flow, reaching a fixed point in the IR. This IR fixed point is 
believed to be in the same universality class as the critical point of the LRI lattice model. 
Interestingly, as it will be explained below, the dimension of φ at the fixed point is still 
given by the same formula (1.3). However, composite operators do get nontrivial anomalous 
dimensions.

3. Finally, for σ > σ∗ the potential is so strongly peaked at short distances that the LRI critical 
point is identical with the SRI critical point, i.e. is independent of σ . The value of σ∗ is 
determined so that the dimension of φ is continuous across this transition:

σ∗ = d − 2�SRI
φ ≡ 2 − ηSRI , (1.4)

using the usual definition of the η critical exponent.
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The above picture is considered standard since the foundational work of [3,4]; it has been 
supported by theoretical studies [5,6] and by Monte-Carlo simulations [7].

There is some ongoing debate about what precisely happens near σ = σ∗. Some recent studies 
[8,9] claim observing deviations from the standard picture in this region, while others provide 
further evidence in its support [10,11].1 In this work we will be focusing on the region near the 
other phase boundary σ = d/2, i.e. away from σ = σ∗. We will therefore not try to weigh in on 
this debate, except for a small comment in the discussion section.

1.1. Problem of conformal invariance

As we will review in section 4, the SRI critical point enjoys the property of conformal invari-
ance. The utility of this symmetry in 2d is long known, as it allows for an exact solution of the 
critical theory [12] via a method called the conformal bootstrap.2 In 3d, an exact solution is not 
yet known, but the conformal bootstrap has recently been used to get the world’s most precise 
numerical determinations of the SRI critical exponents [13].3

What about the LRI critical point? In region 3 it’s identical to the SRI so it’s conformal. 
In region 1 it’s described by the nonlocal Gaussian theory, whose conformal invariance is well 
known and will be reviewed in section 5.

Our main goal here will be to show that the LRI critical point is conformal also in the 
non-Gaussian region 2. This is harder to ascertain, and as far as we know, this issue has not 
been previously discussed. Here we will present a proof valid to all orders in perturbation theory. 
Having conformal symmetry also in this region is very interesting and useful, paving the way 
for the conformal bootstrap methods.4 Until now, the LRI critical point was studied using RG 
methods, both perturbative [3–6] and nonperturbative [11].

The remainder of this paper is organized as follows. In the next section we discuss the basic 
setup of the epsilon expansion for the long-range Ising model. We then provide nontrivial evi-
dence for conformal invariance by computing 〈φφ3〉 and 〈φ2φ4〉 up to order ε2, as we find that 
these correlators vanish at the fixed point. This behavior does not follow from scale invariance 
alone but it is a necessary condition for conformal invariance, so we are led to believe that the 
LRI at criticality could actually be conformally invariant. The remainder of the paper is dedi-
cated to an all-orders proof of this claim. In sections 4 and 5 we review the proofs of conformal 
invariance of the SRI and of the Gaussian theory (see below for a definition). This sets the stage 
for the proof of conformal invariance of the LRI, which we present in section 6. In that section 
we also discuss the prospects for proving conformal invariance at the nonperturbative level. We 
end the paper with some concluding remarks, and several technicalities have been relegated to 
two appendices.

1 Some of this recent literature [10,11] is phrased in terms of an idea of an “effective dimension” Deff(σ ) such that 
the LRI critical point in d dimensions is supposed to be equivalent to the SRI critical point in Deff dimensions. We find 
this idea highly implausible. The relations among a handful of LRI and SRI critical exponents, which led the authors of 
[10,11] to postulate this notion, are most likely approximate (see also [9]). In our work the idea of the effective dimension 
is not going to play any role.

2 In fact, the 2d SRI critical point is invariant under the Virasoro algebra, which is an infinite-dimensional extension 
of the global conformal algebra. In this paper, we will be working in general d and by conformal invariance we will 
mean global, finite dimensional, conformal invariance, unless specified otherwise. In 2d this is sometimes referred to as 
Möbius invariance.

3 For prior work see [14–19]. An alternative technique has been developed in [20–22].
4 Some work has already been done in [16], section 5.4, and [23].
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2. Field-theoretical setup

In this work we will study the LRI critical point for 1 � d < 4, inside the non-Gaussian
region 2, close to the boundary separating it from the Gaussian region 1, i.e. for

σ = (d + ε)/2, 0 < ε � 1 .5 (2.1)

The UV dimension of the φ field is then

�φ = (d − ε)/4 , (2.2)

so that the quartic term φ4 is a weakly relevant perturbation. The IR fixed point is then accessible 
in perturbation theory. As is standard [5,6], we will setup a perturbative expansion using the 
analytic regularization scheme, where Feynman diagrams are considered analytic functions of ε. 
This is convenient since it allows one to evaluate integrals without introducing an explicit UV 
cutoff.

As mentioned in the introduction, the relevant action is

S = S0 + g0

4!
∫

ddx φ4 , S0 = Nσ

2

∫
ddx φ Lσ φ . (2.3)

The coefficient Nσ , whose precise value is unimportant, will be fixed so that the free φ two point 
function is normalized to one:

〈φ(x)φ(0)〉S0 = |x|−2�φ . (2.4)

Notice that the analytic regularization scheme is mass independent. So we can avoid intro-
ducing the mass term m2φ2 into the action (2.3). In other words, in this scheme the flow which 
leads to the fixed point has m2 = 0 all along the flow.

As usual in the field theoretical studies of critical phenomena, it will be extremely useful to 
view the theory (2.3) as regulating the theory with ε = 0, where the interaction is marginal. As 
ε → 0, computations in theory (2.3) give poles in ε. These poles can be removed order by order 
in perturbation theory by multiplicatively renormalizing the terms in the action.6

The Gaussian term in (2.3) is not renormalized, because it’s nonlocal, while the divergences 
are local. In other words, the theory under consideration does not have wavefunction renormaliza-
tion, and the bare and the renormalized field φ coincide. In particular, the anomalous dimension 
of φ vanishes. This implies that, to all orders in perturbation theory, the dimension of φ at the IR 
fixed point is equal to its UV dimension (2.2) [3–5].

On the other hand, the coupling constant does require renormalization. The bare coupling g0
is expressed in terms of the finite, renormalized, coupling g as:

g0 = Z(g, ε)gμε , (2.5)

5 If d is close to 4, we should assume a stronger condition ε � 4 − d , so that we stay closer to the boundary between 
the regions 1 and 2 than to that between 2 and 3. In the opposite case ε � 4 − d the structure of perturbation theory is 
modified due to the presence of a weakly irrelevant operator ∂2φ. See [5,6] for a discussion.

6 Multiplicative renormalizability is most familiar in local quantum field theory, but it holds also for nonlocal theories 
of the kind we are considering here, with the standard proof [24]. For the validity of Weinberg’s convergence theorem 
[25] (that if all subdiagrams are superficially convergent, then the diagram is convergent) in this context see the discussion 
in [26], p. 600. For the structure of divergences in theories with propagators involving arbitrary powers of x2 (studied in 
the context of analytic regularization), see [27] and the discussion in [5].
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where μ is the renormalization scale and Z is the renormalization factor which starts with 1 and 
contains an ascending series of poles in ε:

Z(g, ε) = 1 +
∑∞

k=1
fk(g)ε−k . (2.6)

The coefficient fk(g) of the pole ε−k is a power series in g starting from O(gk); it gets contri-
butions from all loop orders larger than or equal to k.

The β-function of the theory can be expressed in terms of the single pole coefficient:

β(g) ≡ ∂g/∂ logμ = −εg + g2f ′
1(g) . (2.7)

The story is exceedingly similar to the ε-expansion for the Wilson–Fisher (WF) fixed point (see 
e.g. the books [28,29], or [30] for a concise treatment), with an extra simplification that there is 
no wavefunction renormalization.

Let us compute the β-function at the first nontrivial, one-loop, order. We need to determine 
the one-loop counterterm to the coupling. Consider the four point function of φ, which up to the 
second order in g is given by the sum of diagrams:

The O(g2) contribution will contain a 1/ε pole coming from the region where the two φ4 in-
sertions are near each other. The contribution of this region can be easily extracted using the 
operator product expansion (OPE) of the Gaussian UV theory:

φ4(x) × φ4(0) ⊃ (72/|x|d−ε)φ4(0) . (2.8)

This OPE implies that the expansion of the functional integral to the second order will contain a 
short-distance contribution corresponding to the insertion of φ4 times

72 × 1

2
× g2μ2ε

(4!)2

∫
|x|�1

ddx

|x|d−ε
= 36

g2

(4!)2

Sd

ε
+ finite , (2.9)

where Sd = 2πd/2/
(d/2) is the volume of the unit sphere in d dimensions. The 1/ε pole is 
canceled by adding a coupling counterterm

δg = (36g2/4!)(Sd/ε) . (2.10)

Therefore the expansion of the single pole function f1(g) in (2.6) starts with

f1(g) = Kg + O(g2), K = 3Sd/2 . (2.11)

The one-loop β-function is given by

β(g) = −εg + Kg2 + O(g3) . (2.12)

It has a zero at

g = g∗ = ε/K + O(ε2) . (2.13)

This zero corresponds to the LRI critical point that we want to study.7

7 In d = 1, 2, 3 and for sufficiently small ε > 0 the existence of this fixed point has been shown rigorously [31–34]. 
See also [35] for a series of rigorous results about the LRI phase transition. We are grateful to Abdelmalek Abdesselam 
and Pronob Mitter for communications concerning these works.
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Below we will be interested in the correlation functions of the composite operators φn. As 
usual, we will define the renormalized operators [φn] = [φn]g,μ which remain finite in the limit 
ε → 0. They are related to the bare operators φn by rescaling factors subtracting poles in ε:

φn = Zn(g, ε)[φn] . (2.14)

As indicated, the operators [φn] depend on the scale μ and on the value of the coupling g at 
this scale. On the other hand correlation functions of the bare operators don’t depend on μ and g
separately, but only on their combination g0. As usual, this gives a CS equation for the correlators 
of the renormalized operators. The anomalous dimension of [φn] is given by

γn(g) = Z−1
n ∂Zn/∂ logμ|g0=const . (2.15)

Notice that since the dimension of φ is not integer, in the considered theory the φn operators 
don’t mix with the operators where some φ’s are replaced by derivatives.8

As already mentioned above, this theory has no wavefunction renormalization. Therefore φ is 
a finite operator without any rescaling. So Z1 ≡ 1 and γ1 ≡ 0. The UV dimension of φ given in 
(2.2) will also be its IR dimension.9

Let’s compute the anomalous dimensions of φn, n � 2, at the lowest nontrivial order. The 1/ε

contribution to the correlation functions of φn will come from the nearby (g/4!)φ4 insertions. In 
this region we can use the OPE generalizing (2.8):

φn(0) × φ4(x) ⊃ [6n(n − 1)/|x|d−ε]φn(0) . (2.16)

Integration in x gives a 1/ε pole which must be canceled by rescaling the operator. We get

Zn = 1 − Kng/ε + . . . , Kn = n(n − 1)Sd/4 =⇒ γn(g) = Kng + O(g2) . (2.17)

At the IR fixed point we have

γ ∗
n ≈ Kng∗ = [n(n − 1)/6]ε + O(ε2) . (2.18)

These are the same anomalous dimensions as in the usual ε-expansion for the WF fixed point 
(see e.g. [36]). Indeed, the answer at this order is controlled by the combinatorics of the Wick 
contractions in the Gaussian UV fixed point, which is the same in the local free scalar theory and 
in the nonlocal theory defined by our S0. Of course, it’s not true that all computations are the 
same between the two theories. We will see some examples below.

3. Tests of conformal invariance

How can we check if a certain model is conformally invariant or just scale invariant? The cur-
rently available data on the LRI amount to the anomalous dimensions of scaling operators, which 
are determined with RG methods and also measured on the lattice from two point functions. 
These data cannot distinguish between scale and conformal invariance, because both predict the 
same functional form for the critical two point function:

8 This is true for generic d , while for integer d there can be some mixing for high n. E.g. �φ ≈ 1/2 in d = 2, and 
one can trade 4 φ’s for 2 derivatives. This could become important for operators starting from φ6 . In this paper we will 
mostly work with operators up to φ4 and we will ignore this.

9 This fact has also been established non-perturbatively for sufficiently small ε > 0 for which the existence of the fixed 
point is rigorously known [33,34], see Note 7.
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〈O(x)O(0)〉 ∝ |x|−2�O . (3.1)

Here O is a generic scalar operator of dimension �O.
One celebrated prediction of conformal invariance is the form of a three point function [37], 

but this is harder to compute and to measure on the lattice than the two point function. We are 
not aware of any three point function data for the LRI critical point.

An easier discriminating variable is the two point function of two different operators. Scale 
invariance predicts that

〈O1(x)O2(0)〉 = c12|x|−�1−�2 , (3.2)

while conformal invariance implies [37] the stronger constraint that c12 = 0 unless �1 = �2. 
To be precise, this conclusion is reached if both operators are so-called primary operators, i.e. if 
they are not derivatives of other operators. If the Oi are both of the form (∂2)niO for the same 
operator O, they will of course have a nonzero two point function. This trivial case is easy to 
monitor since the scaling dimensions are different by an even integer.

To summarize, conformal invariance implies that any two scalar operators whose dimensions 
are not different by an even integer must have a zero two point function, while scale invariance 
would allow such two point functions to be nonzero.

The goal of this section will be to study the following two point functions of different scalars 
at the critical point of the LRI:

〈φ(x)φ3(0)〉 and 〈φ2(x)φ4(0)〉 . (3.3)

Notice that we chose pairs of operators with the same parity under φ → −φ. If the IR fixed point 
is only scale invariant but not conformal, these correlators could be nonzero.

We will consider these correlators in the perturbative setup of the previous section. As we will 
see, a nontrivial check requires to go to at least the second order in the coupling constant g, or in 
the parameter ε parametrizing the deviation from marginality. At O(ε2), scale invariance alone 
then allows for both of the above correlators to be nonzero.

As a matter of fact, it turns out that the first correlator is a bit special, as it involves φ whose 
anomalous dimension is identically zero, as well as φ3 which is related to φ via a “nonlocal 
equation of motion” (nonlocal EOM).10 Using these facts, we will give an all-order argument 
that the correlator 〈φ φ3〉 vanishes at the IR fixed point. We will buttress the argument by an 
explicit second-order computation showing that the correlator vanishes at O(ε2).

We do not know any analogous general argument for the correlator 〈φ2φ4〉. This seems to be a 
truly generic correlator involving fields with unrelated anomalous dimensions. We will perform 
an explicit second-order computation for this correlator, finding that it also vanishes at O(ε2).

These computations lead us to believe that the LRI critical point is in fact conformally invari-
ant, and to look for a general proof of this fact. A proof that we found will be discussed in the 
rest of the paper.

3.1. 〈φ φ3〉

By dimensional considerations, this correlator should behave in the IR as C|x|−�φ−�
φ3 . We 

recall that at the WF fixed point C �= 0 because φ3 is not a primary but is related to φ by the 
equations of motion: φ3 ∝ ∂2φ. In the conformal field theory (CFT) language, φ3 is a descendant 

10 We thank Riccardo Rattazzi who emphasized this to us.
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of the primary φ. At the LRI fixed point, we know for sure that φ3 is not a descendant of φ since 
the dimensions don’t match. So C �= 0 would disprove conformal invariance, while C = 0 would 
be evidence in its favor.

We will first show that C = O(ε3) by an explicit computation, and next present an argument 
that C = 0 to all orders in perturbation theory.

3.1.1. Explicit computation
We will now present an explicit computation of the correlation function 〈φ φ3〉 to the second 

order in the coupling. More precisely, we will consider the correlator

F(x,g,μ) = 〈φ(x)[φ3](0)〉 , (3.4)

where [φ3] = [φ3]g,μ is the φ3 rescaled by subtracting poles in ε as discussed in section 2.11

This correlator allows an expansion in powers of the renormalized coupling g without poles in ε. 
By dimensional reasons, it should have the form

F = f (s, g)|x|−�φ−�
(0)

φ3 , (3.5)

where �(0)

φ3 = 3�φ is the UV dimension of φ3 and f is a function of dimensionless variables g
and s ≡ μ|x|.

We will have a Callan–Symanzik (CS) equation expressing the invariance of the theory under 
simultaneous changes of g and μ leaving g0 fixed:

[μ∂μ + β(g)∂g + γ3(g)]F(x,g,μ) = 0 . (3.6)

The only difference from the usual φ4 theory is that the anomalous dimension of φ does not 
appear since it’s identically zero. Substituting (3.5) into (3.6), we get an equation for f :

[s∂s + β(g)∂g + γ3(g)]f (s, g) = 0 . (3.7)

At large distances β(g) → 0 and γ3(g) → γ3(g∗), and Eq. (3.7) predicts

f (s, g) ≈ Cs−γ3(g∗) . (3.8)

We thus rederived the result that at large distances the considered correlation function should go 
as |x|−�φ−�

φ3 where �φ3 = �
(0)

φ3 + γ3(g∗). This argument does not determine the value of C, 
which in particular may still turn out to be zero.

To determine the prefactor C, we have to match the CS equation to fixed-order perturbation 
theory. Recall that the full solution of Eq. (3.7) can be written in the form:

f (s, g) = f̂
(
ḡ(s, g)

)
exp

[
−

∫ s

1
d log s′ γ3

(
ḡ(s′, g)

)]
, (3.9)

where ḡ is the “running coupling” solving the following differential equation with a boundary 
condition at s = 1:

s ∂s ḡ = −β(ḡ) , ḡ|s=1 = g . (3.10)

11 Note that since we don’t take the limit ε → 0, operator renormalization is not strictly necessary. The rescaling factors 
Zn(g, ε) are finite at finite ε, and the 1/ε terms in them never even become large, since g = O(ε) all along the RG 
flow. The role of renormalization is rather that of convenience, as it allows to cleanly separate the O(1) effects coming 
from the powers of g/ε from the effects suppressed by powers of g which are truly higher order. This makes the weakly 
coupled nature of the theory manifest.
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In particular, at s = 1 the function f (s, g) reduces to f̂ (g). Once this latter function is fixed from 
perturbation theory, the prefactor C in (3.8) is found as

C = f̂ (g∗) . (3.11)

We will now show that this vanishes up to order ε2.
For this we would like to extract f̂ up to the second order in g. Consider first the nonrenor-

malized correlator

F0(x) = 〈φ(x)φ3(0)〉 , (3.12)

which has no tree-level contribution. Up to the second order in the coupling it is given by the 
sum of two position-space diagrams12:

(3.13)

Both these diagrams are easily evaluated using the following basic integral (which in turn can be 
derived by going to momentum space):∫

ddy

|x − y|A|y|B = wA wB

wA+B−d

1

|x|A+B−d
, wA = (4π)d/22−A



(

d−A
2

)

(A/2)

. (3.14)

Using this result, we obtain

F0(x) = R1g0/|x|d−2ε + R2g
2
0/|x|d−3ε + O(g3

0) , (3.15)

where

R1 = −
wd−ε

2
w3 d−ε

2

wd−2ε

≈ −ε πd/2 
(−d/4)
(d/2)


(3d/4)
,

R2 = 3

2

w2
d−εwd−ε

2
w 3

2 d− 5
2 ε

wd−2εwd−3ε

≈ 9πd 
(−d/4)


(3d/4)
. (3.16)

The given approximate expressions are the leading ones in the small ε limit. Notice that R1 =
O(ε). This has a simple explanation: in the limit ε → 0 the interaction becomes exactly marginal, 
the integral defining R1 becomes conformal, and it should give zero answer for a correlator of 
two fields of different scaling dimensions by the usual arguments based on conformal symmetry. 
To get a nontrivial check of conformal invariance, we have to go to the second order in ε, hence 
to the second order in g, which is what we are doing.

To get at the function f̂ , we need to replace the coupling g0 by g via (2.5), (2.11):

g0 = Zgμε = [g + Kg2ε−1 + O(g3)]με , (3.17)

and to use the relation between φ3 and [φ3], see (2.14), (2.17). This gives the following expres-
sion for F to the second order in g:

F(x) =
{
gR1s

ε + g2[R1(K + K3)ε
−1sε + R2s

2ε]
}

/|x|d−ε . (3.18)

12 The signs and combinatorial factors are left implicit.
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We see the structure is in agreement with (3.5). To extract f̂ we set s = 1 and obtain13:

f̂ (g) = gR1 + g2[R1(K + K3)ε
−1 + R2] + O(g3) . (3.19)

Since R1 = O(ε) this expression is free of poles in ε: as we mentioned above the correlator and 
in particular f̂ should have a regular expansion in g without such poles. Using (3.19) and (3.9)
we can compute the considered correlator at all distances with ε2 accuracy.

Now using the values of the various constants appearing in (3.19), it’s easy to see that to the 
order that we computed it can be rewritten as

f̂ (g) = −R1ε
−1(−εg + Kg2) = −R1ε

−1β(g) . (3.20)

This form of writing makes it manifest that f̂ (g) vanishes at the IR fixed point.

3.1.2. General argument
We will now give a general argument that C = 0 to all orders in perturbation theory. The idea 

is to use the nonlocal EOM of the LRI field theory (2.3)14:

NσLσ φ + g0

3! φ
3 = 0 . (3.21)

This can be used to express the correlators of φ3 in terms of those of φ. In particular:

〈φ3(x)φ(0)〉 ∝ Lσ 〈φ(x)φ(0)〉 . (3.22)

This equation is subtle to use, because the fractional Laplacian is a nonlocal operator. We will 
therefore proceed cautiously.

First of all we have to understand in some detail the correlator 〈φ(x)φ(0)〉. Since φ does not 
acquire an anomalous dimension, its two point function has the form

〈φ(x)φ(0)〉 = ρ(x)|x|−2�φ , (3.23)

where

ρ(x) = ρ̂
(
ḡ(s, g)

)
(3.24)

is a function of the running coupling ḡ which we introduced in the previous section. The function 
ρ̂ can be determined by matching to perturbation theory. We will only need to know its rough 
structural properties.

Through O(g2) we have two diagrams:

(3.25)

This implies that

ρ̂(g) = 1 + Qg2 + . . . , Q = (πd/6)

(− d

4

)
/


(
3d
4

)
. (3.26)

13 We have analyzed also the leading log s terms in the expansion of G around s = 1 and checked that they are consistent 
with what the solution (3.9) to the CS equation predicts.
14 Notice that it would be a non-permissible stretch of terminology to call φ3 a “nonlocal descendant” of φ on the 
grounds of this equation. Descendants are defined as local derivatives of primaries, and we are not aware of any useful 
generalization of the descendant concept to nonlocal relations.
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We see that the function ρ(x) approaches a constant at short and long distances:

ρ(x) →
{

1 , x → 0 ,

ρ(g∗) = 1 + O(ε2) , x → ∞ .
(3.27)

In what follows we will also need the asymptotics of the approach to the long distance limit. 
From now on we will fix μ to be a scale μc at which the coupling g ∼ g∗/2 is roughly halfway 
between the UV and the IR fixed points. The long distance asymptotic behavior of the running 
coupling ḡ is given by:

ḡ = g∗ − O(εs−β ′(g∗)) (s � 1) , (3.28)

where β ′(g∗) = ε + O(ε2). It follows that ρ(x) approaches the long distance limit as

ρ(x) = ρ(g∗) + O(ε2s−β ′(g∗)) . (3.29)

We are now ready to compute the long distance behavior of the correlator 〈φ3(x)φ(0)〉. Ac-
cording to Eq. (3.22) we need to evaluate the integral:

I =
∫

ddy T (x − y) 〈φ(y)φ(0)〉 , (3.30)

where T (x − y) ∝ |x − y|−d−σ is the position space kernel of the fractional Laplacian, see 
eq. (1.2). Notice that this kernel is not absolutely integrable and at short distances it must be 
understood in the sense of distributions, as the Fourier transform of |k|σ .

We split the above integral into two parts I = I1 + I2, one against the long distance asymp-
totics of 〈φ φ〉 and the rest:

I1 =
∫

ddy T (x − y)ρ(g∗)|y|−2�φ , (3.31)

I2 = I − I1 =
∫

ddy T (x − y)[ρ(y) − ρ(g∗)]|y|−2�φ . (3.32)

The first part I1 vanishes at non-coincident points, I1 ∝ δ(x), by the definition of Green’s 
function of the Gaussian theory. As to I2, in the limit of very large x the leading asymptotics of 
the integral will come from large y, where we can use the asymptotics (3.29). We get:

I2 ∼
∫

ddy T (x − y)ε2s−β ′(g∗)|y|−2�φ . (3.33)

By dimensional analysis, this integral behaves ∝ |x|−α with

α = σ + 2�φ + β ′(g∗) . (3.34)

It’s important that this exponent is larger than �φ + �φ3 :

α − (�φ + �φ3) = β ′(g∗) + O(ε2) , (3.35)

using the known anomalous dimension of φ3, γ3(g∗) = ε + O(ε2). This means that the constant 
C in the natural dimensional asymptotics of the studied correlator, see (3.8), has to vanish. The 
current argument establishes this fact to all orders in perturbation theory.

The above reasoning was made possible by two properties: the nonlocal EOM and the van-
ishing anomalous dimension of φ. Before leaving this section, we will similarly prove one more 
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interesting fact: that γ ∗
3 = ε to all orders in perturbation theory. In other words the leading order 

result in (2.18) is in fact exact for n = 3.
We will use the nonlocal EOM to prove the following relation between the IR dimensions of 

φ and φ3:

�φ3 = �φ + σ (IR) , (3.36)

of which γ ∗
3 = ε is an immediate consequence. Eq. (3.36) looks similar to the relation �φ3 =

�φ + 2 valid at the WF fixed point, also a consequence of the corresponding EOM. However, 
due to nonlocality, the proof is a bit more subtle for the LRI.

The idea is to use the nonlocal EOM twice, expressing 〈φ3φ3〉 in terms of 〈φφ〉. This relation 
takes the form:

〈φ3φ3〉 = 36g−2
0 N 2

σLσLσ 〈φφ〉pert , 〈φφ〉pert ≡ 〈φφ〉 − 〈φφ〉S0 , (3.37)

with the two Lσ ’s acting on each of the arguments of 〈φφ〉pert. The subtlety here is that we have 
to subtract the Gaussian two point function. This is easy to understand in perturbation theory. 
〈φφ〉pert is the sum of all diagrams in which each φ is connected to a vertex, like in the second 
diagram in (3.25). When we act with Lσ ’s, the legs connecting φ’s to the vertices get canceled, 
and we reproduce all diagrams for 〈φ3φ3〉. Were we to keep 〈φφ〉S0 , we would get an extra 
nonlocal contribution which does not correspond to any diagram. This is in contrast to what 
happens when using the equation of motion in the local ϕ4 theory. In that case the contribution 
from the unperturbed propagator is zero at noncoincident points and we don’t have to worry 
about it.15

Let us proceed now to the proof of (3.36). It will be convenient to work in momentum space. 
The asymptotics (3.29) of the function ρ(x) means that the Fourier transform of 〈φ φ〉pert behaves 
at small momenta as:

〈φ(−k)φ(k)〉pert ∼ |k|−σ [1 + O(|k|β ′(g∗))] . (3.38)

It’s important that the proportionality coefficient here is nonzero (we computed that it’s O(ε2)). 
When we act on this correlator once by the fractional Laplacian, multiplying by |k|σ , the leading 
term gives 1, which is a delta-function in the position space, and the subleading term determines 
the long-distance asymptotics. We thus reproduce the above result that 〈φ3 φ〉 vanishes in the IR 
faster than its natural scaling. However, when we act by the fractional Laplacian twice, the lead-
ing result is nonanalytic |k|σ and it is this result which determines the long-distance asymptotics. 
We conclude that the two point function 〈φ3 φ3〉 behaves at long distances as 1/|x|d+σ , which 
can be expressed as Eq. (3.36).

3.2. 〈φ2φ4〉

In the previous section we studied the correlator 〈φ φ3〉 and found that it vanishes at the IR 
fixed point, consistently with conformal invariance. However, as we saw, the studied correlator 
was actually a bit special, since it involved two fields related by the nonlocal EOM of the LRI. 
One could wonder if the vanishing of this correlator is an accident. In this section we will study 
the correlator 〈φ2 φ4〉, which as far as we can see is a truly generic correlator of our theory. We 
will find, by an explicit computation at O(ε2), that this correlator also vanishes at the IR fixed 

15 One can also check that (3.37) has a smooth limit when g0 → 0, reducing to 〈φ3φ3〉S0 in this limit. This would not 
be the case were we to keep 〈φφ〉S .
0
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point. We consider this a strong piece of evidence for the conformal invariance of the LRI critical 
point.

The computation proceeds similarly to 〈φ φ3〉, so we will be brief. The renormalized correla-
tor

H(x,g,μ) = 〈[φ2](x) [φ4](0)〉 = h(s, g,μ)|x|−�
(0)

φ2 −�
(0)

φ4 (3.39)

satisfies a CS equation which can be solved to give:

h(s, g,μ) = ĥ
(
ḡ(s, g)

)
exp

{
−

∫ s

1
d log s′ [

γ2
(
ḡ(s′, g)

) + γ4
(
ḡ(s′, g)

)]}
. (3.40)

The function ĥ is determined by matching to perturbation theory. We have one diagram at O(g0)

and three diagrams at O(g2
0):

(3.41)

The first two diagrams here are the same as in (3.13) times an extra propagator. The third diagram 
is new, but it can also be readily evaluated using Eq. (3.14) repeatedly. The final diagram is the 
hardest—it is analyzed in Appendix A.

The nonrenormalized correlator is thus given by

H0(x) = P1g0

|x|3d/2−5ε/2
+ (P2a + P2b + P2c)g

2
0

|x|3d/2−7ε/2
+ O(g3

0) , (3.42)

where we split the coefficients diagram by diagram. Taking into account signs and symmetry 
factors, we have (see (3.16)):

P1 = 8R1,

P2a = 8R2 ,

P2b = 4
w 3

2 (d−ε)
wd−ε

2
wd−εw 3

2 d− 5
2 ε

wd−2εw 3
2 d− 7

2 ε

≈ 8πd



(− d
4

)



(
3d
4

) ,

P2c ≈ 24πd

(− d

4

)
/


(
3d
4

)
. (3.43)

To pass from this result to the function ĥ, we need to perform the coupling and operator renor-
malization. We get:

ĥ(g) = gP1 + g2[P1(K + K2 + K4)ε
−1 + P2a + P2b + P2c] + O(g3) . (3.44)

Putting in the values of all coefficients, we find that this expression is proportional to the one-loop 
beta function, similarly to (3.20). We conclude that ĥ(g) vanishes at the IR fixed point at O(ε2).
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4. Conformal invariance of the SRI critical point

In the previous section we found that two point functions 〈φ φ3〉 and 〈φ2 φ4〉 vanish at the 
critical point of the LRI model. Nonzero values of these correlators would be consistent with 
the scale invariance and the Z2 symmetry of the IR fixed point. We know of no symmetry but 
conformal invariance which could forbid these two correlators. We are led to believe16 that the 
model is conformally invariant, and we must understand why.

The phase diagram of the LRI model in Fig. 1 has three regions. Here we are interested in 
the conformal invariance inside the nontrivial region 2. In region 1 the critical point is Gaussian, 
while it coincides with the SRI in region 3. The latter two cases are known to be conformally 
invariant, as will be reviewed in this and the next section. Understanding these arguments will be 
essential for the proof in the case of interest, in section 6.

We will focus here on the proof of conformal invariance of the SRI critical point to all orders 
in the ε-expansion. Consider thus the usual, local ϕ4 theory in D = 4 − ε dimensions17:

S =
∫

dDx

[
1

2
(∂ϕ0)

2 + λ0

4! ϕ4
0

]
. (4.1)

The model is regularized and renormalized using the dimensional regularization and the minimal 
subtraction scheme. There is an IR fixed point, called the Wilson–Fisher (WF) fixed point, which 
provides a field-theoretic description for the SRI critical point. We are specializing directly to the 
massless case, since in the considered scheme the mass renormalizes multiplicatively, and the 
fixed point is reached for zero bare mass.

The idea of the proof [38,39,30,40] is to construct the Ward identities for scale and conformal 
invariance broken by the effects of the running coupling, and to show that the breaking effects 
disappear at the fixed point. We will follow here a simplified version of the presentation by Brown 
[30].18

Consider the canonical stress tensor of the theory:

Tμν = ∂μϕ0 ∂νϕ0 − δμν

{
1
2 (∂ϕ0)

2 + (λ0/4!)ϕ4
0

}
. (4.2)

It’s easy to compute its divergence and trace:

∂νTμν = −Eμ , (4.3)

T μ
μ = −ε

λ0

4! ϕ
4
0 − (D/2 − 1)E + (1/2 − D/4)∂2ϕ2

0 , (4.4)

where the E and Eμ are operators proportional to the equations of motion of the theory:

E = ϕ0

{
−∂2ϕ0 + (λ0/3!)ϕ3

0

}
, Eμ = ∂μϕ0

{
−∂2ϕ0 + (λ0/3!)ϕ3

0

}
. (4.5)

Correlation functions of these operators are trivial: their insertions into N -point functions of ϕ
produce a bunch of δ-function at coincident points, see Brown’s (3.10), (3.28):

16 Contrary to the initial conviction of some of us.
17 We will use ϕ, D, ε in this section not to confuse with φ, d, ε used in the sections dealing with the LRI. In the SRI 
case there is wavefunction renormalization, so we have to distinguish between the bare field ϕ0 and the renormalized ϕ.
18 Brown’s goal was to construct a finite, renormalized, stress tensor, which he then also used to discuss the Ward 
identities. Since here we are only interested in the Ward identities, we can derive them using the canonical stress tensor, 
differing from Brown’s finite tensor by total derivative terms. This allows us to avoid a complicated discussion of tensor 
operator renormalization, using only the rather simpler Eq. (4.7).
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G(x1 . . . xN ;E(x)) =
∑N

i=1
δ(x − xi)G(x1 . . . xN) ,

G(x1 . . . xN ;Eμ(x)) =
∑N

i=1
δ(x − xi)

∂

∂x
μ
i

G(x1 . . . xN) . (4.6)

One may wonder why we bother at all about the operators E and Eμ, since they have vanishing 
correlation functions at non-coincident points. Indeed, in the usual CFT language, they would 
not even qualify to be called operators. However, here we are working in perturbative quantum 
field theory, and in this situation it turns out to be both legitimate and useful to have access to E
and Eμ. Legitimate because in the regularized theory the equations (4.6) make perfect technical, 
and not just formal, sense. Useful because the fastest derivation of the Ward identities uses these 
operators, as we will see momentarily.

We will need next Brown’s Eqs. (3.13), (3.14) and (3.18) which relate the nonrenormalized 
operator ϕ4

0 to the renormalized finite operator [ϕ4]19:

λ0

4! ϕ
4
0 = −μελ

4! (β(λ)/ε)[ϕ4] + (γ (λ)/ε)E + const.∂2ϕ2
0 . (4.7)

Using this relation in (4.4), we get:

T μ
μ = με

4! β(λ)[ϕ4] − �(λ)E + const′.∂2ϕ2
0 , (4.8)

where �(λ) = (D − 2)/2 + γ (λ) is the full (classical + anomalous) dimension of ϕ.
One could (as Brown does) construct an improved stress tensor whose trace would not contain 

a ∂2ϕ2
0 term. This requires adding to Tμν the well-known improvement term ξ(∂μ∂ν −ημν∂

2)ϕ2
0 . 

At the classical level ξ = −(D − 2)/[4(D − 1)], but it gets corrected at the quantum level [30]. 
If one is only interested in the Ward identities, as we are here, all this extra work can be avoided, 
since ∂2ϕ2

0 will drop out.
So, we proceed with the derivation of the Ward identities. Consider the objects

Dμ = Tμνx
ν , Cμ

λ = Tμν(2xνxλ − δνλx2) . (4.9)

These are called scale and special conformal currents. By (4.3) their divergences can be expressed 
as:

∂μDμ = −xμEμ + T μ
μ , (4.10)

∂μCμ
λ = −(2xμxλ − δμλx2)Eμ + 2xλT μ

μ . (4.11)

Inserting these equation in an N -point function and integrating over the full space, we get20:∫
dDx G(x1 . . . xN ;−xμEμ(x) + T μ

μ(x)) = 0 , (4.12)∫
dDx G(x1 . . . xN ;−(2xμxλ − δμλx2)Eμ(x) + 2xλT μ

μ(x)) = 0 . (4.13)

19 In accord with the rest of this paper, we denote by β(λ) the full beta-function, equal to −ελ + βBrown(λ).
20 The boundary term arising when integrating by parts vanishes. To show this one has to estimate a correlation function 
of a group of ϕ’s and a widely separated Tμν . In the critical theory and for a traceless Tμν this would be 1/|x|2D by 
using the stress tensor dimension. But here we need an estimate for a theory which has not yet reached the fixed point, 
and for an unimproved Tμν . For a quick and dirty estimate, notice that there will be at least two propagators connecting 
Tμν to the ϕ’s, with two derivatives acting on them. This gives decay ∼ 1/|x|2D−2, which is more than sufficient for D
near 4. The ϕ4 part of Tμν gives an even smaller contribution. An analogous argument justifies integrating by parts ∂2ϕ2

0
a few lines below.
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The contribution of ∂2ϕ2
0 in T μ

μ vanishes after integrating by parts. Contributions of the other 
terms can be all expressed using (4.8) and (4.6). We finally obtain:

N∑
i=1

[xi.∂xi
+ �(λ)]G(x1 . . . xN) = β(λ)

με

4!
∫

dDx G(x1 . . . xN ; [ϕ4](x)) , (4.14)

N∑
i=1

[
(2x

μ
i xλ

i − δμλx2
i )

∂

∂x
μ
i

+ 2�(λ)xλ
i

]
G(x1 . . . xN)

= 2β(λ)
με

4!
∫

dDx xλ G(x1 . . . xN ; [ϕ4](x)) . (4.15)

These are the Ward identities expressing the breaking of scale and special conformal invariance 
by the running coupling. They are valid at all distances and for all λ. For the purposes of study-
ing the IR fixed point, we have to go to large distances and to take the limit μ → 0, so that 
λ(μ) → λ∗. In this limit the beta-function multiplying the RHS vanishes. One is thus tempted to 
conclude that the IR fixed point is both scale and conformally invariance.

While the conclusion is certainly correct, we believe that this last step of the argument merits 
somewhat more attention. There is a subtlety here. It’s true that β(λ) → 0 as μ → 0, but what 
about the integrals multiplying it? The integrals are μ-dependent because the operator [ϕ4] is 
normalized at the scale μ. Could it be that the integrals grow in the μ → 0 limit, overcoming 
the β(λ)με suppression? This issue seems to have been neglected in the literature. In the next 
section we analyze the situation in detail and prove that this does not happen: the integrals behave 
as O(μ−ε), and so inferring the suppression from β(λ) is correct. Our argument is a bit technical, 
and it would be nice to find a simpler proof.21

Taking that argument for granted, we have shown that the long-distance limit of the correlation 
functions of [ϕ] transforms covariantly under the conformal group, with [ϕ] being a primary 
field of dimension �(λ∗). For a complete proof of conformal invariance of the SRI critical point, 
one needs to extend this result to correlators of composite operators. Correlation functions of 
composites can be related to those of the fundamental field by using the OPE, and it seems rather 
plausible that they will also be conformal. In Appendix B we sketch a proof of this fact.

At this point one may ask, analogously to what we did in section 3: can conformal invariance 
of the SRI critical point be tested by checking that two point functions of different primaries 
vanish? As mentioned in section 3.1, the correlator 〈ϕ ϕ3〉 is nonzero in this theory because 
ϕ3 is a descendant of ϕ. As for the 〈ϕ2 ϕ4〉 correlator, we computed it and found that it does 
vanish at the IR fixed point to the first nontrivial order in ε, which in this theory is O(ε).22 This 
computation is a bit nontrivial as it requires careful analysis of the mixing between the operators 
ϕ4 and ∂2ϕ2, so we don’t present the details [43].

21 Such a proof can perhaps be given in the framework of the local CS equation [41,42] for the ϕ4 theory with 
x-dependent λ coupling. We thank Hugh Osborn for sharing with us his thoughts and preliminary results in this di-
rection.
22 The argument given below equation (3.16) that O(ε) is trivial in the LRI does not apply in the SRI. The reason is that 
for ε = 0 the SRI Feynman integrals are log-divergent. When moving to ε > 0 they have ε−1 poles enhancing the effect.
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4.1. Scale and conformal invariance breaking effects

Here we will study carefully how the broken Ward identities (4.14) and (4.15) imply scale and 
conformal symmetry of the WF fixed point.

4.1.1. A proof which is too quick, and a paradox
Let us first discuss a deceptively quick proof.23 Can’t we just set λ = λ∗ in these equations? 

On the one hand, the correlators in the LHS then become the IR limits of the correlators of the 
full theory. On the other, the RHS side goes away as β(λ∗) = 0. Right?

In our opinion, this argument is plagued with the following basic problem: the integrals mul-
tiplying β(λ) become UV divergent for λ = λ∗. Indeed, for y → xi we can use the OPE

ϕ(xi) × [ϕ4](y) ∼ const.

|xi − y|�ϕ4
ϕ(xi), (4.16)

where �ϕ4 = D + ε + O(ε2) is the IR dimension of ϕ4. Thus the integrals diverge as �ε , where 
� is the UV cutoff marking the boundary where the asymptotics (4.16) applies. In the strict 
λ = λ∗ limit we have � = ∞, the RHS of the Ward identities becomes 0 × ∞, and we learn 
nothing.

Clearly, we should resolve this 0 × ∞ ambiguity by keeping λ slightly different from λ∗. We 
should then identify � with μc—the scale where the full RG flow transitions from the UV to the 
IR fixed point. This scale can be defined by the equation

λ(μc) ∼ 1
2λ∗ . (4.17)

Since for |xi − y| � μ−1
c the dimension of ϕ4 is near its UV fixed point dimension D − ε, the 

UV divergence of the integrals will be cut off at μc. We then send μc → ∞, keeping μ and x
fixed. In this limit λ approaches λ∗ as

λ∗ − λ ∼ ε(μ/μc)
ε . (4.18)

We obtain

β(λ) × (integral) = O(λ∗ − λ) × �ε = O(μ−ε
c × με

c) = O(1) . (4.19)

Here we kept track only of the μc dependence, as other parameters are kept fixed.
We thus have a paradox: in the μc → ∞ limit the suppression from the β-function seems to 

be exactly compensated by the growth of the integral. The RHS of the Ward identities seems to 
remain O(1) and we show neither scale nor conformal invariance.

4.1.2. Correct proof
The resolution of the paradox is that the naive dimensional analysis does not capture the true 

asymptotics of the integrals multiplying the β-function. The estimate O(με
c) applies separately 

to the UV and IR parts of the integral, but as we will now explain, a cancelation occurs when the 
two are added. The full integral is then O(1) instead of O(με

c).
From now on, instead of taking μc → ∞ with x, μ fixed, it will be more convenient to keep 

μc fixed and approach the IR by taking x � μ−1
c , μ � μc. We will then have to keep track 

23 See e.g. p. 29 of [40].
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how various terms scale in the μ → 0 limit. The basic issue—the insufficiency of the naive 
dimensional analysis—will however be the same as in the above paradox.

Starting with the scale Ward identity (4.14), we notice that it can in fact be analyzed in two 
ways. One way is through the OPE as above:

ϕ(0)[ϕ4](y) ∼ C(μ,y)ϕ(0) . (4.20)

The argument μ reminds that [ϕ4] is normalized at the scale μ. In the x → ∞ limit the RHS of 
(4.14) can be approximated by using this OPE as

Nβ(λ)
με

4!
∫

dDy C(μ,y) × G(x1 . . . xN) . (4.21)

The second, actually more standard, way to analyze (4.14) is rewrite its RHS as24

β(λ)(∂/∂λ)G(x1 . . . xN) , (4.22)

turning it into a CS equation, which can be solved similarly to the familiar two point function 
case. In particular this implies that at long distances the correlator is scale invariant with anoma-
lous scaling dimensions:

G(ξy1, . . . , ξyN) ∝ ξ−N�(λ∗), ξ � 1 , (4.23)

where the points y1, . . . , yN are assumed to have O(μ−1
c ) distances among them.

Let us now take (4.23) and plug it into the LHS of (4.14). Assuming that all distances among 
xi are large compared to μ−1

c , the LHS of (4.14) equals:

N(�(λ) − �(λ∗))G(x1 . . . xN) . (4.24)

Comparing this to the RHS as given in (4.21), we get an interesting integral constraint on the 
OPE kernel:

β(λ)
με

4!
∫

dDy C(μ,y) = �(λ) − �(λ∗) . (4.25)

Expanding this equation in λ − λ∗ for λ(μ) near λ∗ (i.e. μ � μc), we get

με

4! ×
∫

dDy C(μ,y) = O(1) (μ � μc) . (4.26)

It’s instructive to compare this result with simple dimensional analysis. By dimensional analysis, 
C(μ, y) must be of the form

C(μ,y) = 1/|y|D−ε × f (|y|μ,λ) . (4.27)

Moreover, at large distances and to the leading order in epsilon it should scale ∝ 1/|y|D+ε , since 
the IR dimension of [ϕ4] is D + ε + O(ε2). We will ignore the admixture of ∂2[ϕ2] operator to 
[ϕ4], since such admixture does not contribute to the integrals in the RHS of the Ward identities. 
We conclude that f ∝ (|y|μ)−2ε in the IR and thus

C(μ,y) ∝ 1/[|y|D+εμ2ε], y � μ−1
c . (4.28)

Thus, were we to estimate the integral in (4.26) by extending the integration from μ−1
c to ∞, we 

would get a result which is not O(1) but grows in the μ → 0 limit as:

με × (με
c/μ

2ε) = (μc/μ)ε . (4.29)

24 See [30], eq. (3.19); factor με is missing in the RHS of that equation.
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This is the same growth which plagued the argument in section 4.1.1. Apparently, there is a 
cancelation between the IR and the UV25 parts of (4.26). Separately they blow up in the μ → 0
limit, but their sum remains O(1).

To summarize the logic so far: there are two ways to analyze the scale Ward identity. The first 
is based on using the OPE which reduces to the integral of the OPE kernel. One needs further 
input to get a good estimate for this integral. This input comes from using the second way of 
analysis, which is based on the CS equation and gives scale invariance. From consistency of the 
two ways we obtain (4.26).

Now to the special conformal Ward identity. Its RHS cannot be reproduced by differentiating 
the Lagrangian.26 Thus there is only one way to proceed, that based on the OPE. We will now 
show, using (4.26), that the integral in the RHS of this Ward identity:

με

∫
dDy yλ G(x1 . . . xN ; [ϕ4](y)) (4.30)

remains for μ → 0 of the same order of magnitude as the quantities appearing in the LHS. 
Multiplied by β(λ) it vanishes, proving conformal invariance in the IR.

We will choose all xi and their distances large, of the order s � μ−1
c . We will also take 

μ � μc to have the coupling closed to its fixed point value. Finally, we will assume s � μ−1. 
The rationale for this further separation of scales should become clear below. We then divide the 
integral into three regions:

1. y is at distances � μ−1 from one of xi . Here we can use the OPE. We have (z = y − xi):

με

∫
|z|�μ−1

C(μ, z)(zλ + xλ
i ) = 0 + xλ

i × O(1) (4.31)

where we used that C(z) is spherically symmetric, and that the integral (4.26) remains O(1) even 
when we truncate it to y � μ−1. Indeed, the truncated away part of the integral can be estimated 
by naive dimensional analysis using (4.28), and it’s O(1).27

2. y at distances between μ−1 and s. Here the OPE becomes less and less precise as the distance 
from xi increases. But we can still use it as an order of magnitude estimate, by saying that the 
insertion of [ϕ4] suppresses the correlation function by (see eq. (4.28))

O(1/[|z|D+εμ2ε]), μ−1 � |z| � s . (4.32)

This is enough to conclude that the integral over this region is of the same order of magnitude as 
the LHS.

3. y at distances � s from the group of xi . The correlator decays as 1/|y|2�4 . The integral is 
dominated by y near the lower integration limit, which is the same as region 2.

This finishes the perturbative proof that the SRI correlations functions at the IR fixed point 
enjoy special conformal invariance.

25 The integral converges in the UV since the UV dimension of ϕ4 is D − ε.
26 Unless one introduces x-dependent couplings, see Note 21.
27 One could ask about the contributions of the subleading OPE terms, like those proportional to ∂μφ and to the other 
operators. All such terms can be estimated using the naive dimensional analysis and they are small. Indeed, they are 
power suppressed compared to the leading term by at least one power of y/s. Since the naive dimensional analysis was 
only missing the true behavior of the leading term by a power of ε, it’s more than sufficient for the subleading terms.
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4.2. SRI conformal invariance beyond perturbation theory28

Let us briefly discuss what is known about the conformal invariance of the SRI critical point 
beyond perturbation theory. First of all, in 2d the SRI is exactly solvable on the lattice. Polyakov 
[37] first noticed that the critical three point correlation functions following from the exact so-
lution satisfy the restrictions of global conformal symmetry. In the continuum limit the 2d SRI 
critical point is a minimal model CFT M3,4 [12]. Aspects of global conformal and Virasoro 
invariance of the SRI critical point observables were also proven rigorously by mathematicians, 
pioneered by S. Smirnov for nonlocal observables such as interfaces [44], and recently extended 
to correlation functions of local operators in bounded domains [45].

In 3d, the most dramatic evidence for the conformal invariance of the SRI critical point comes 
from its recent exploration using the conformal bootstrap methods [14–19,13,20–22]. These 
methods take conformal invariance as an assumption, which leads to a system of equations on the 
operator dimensions and OPE coefficients of the theory. The system is tightly constraining, and 
the fact that it has a solution which is in agreement with everything computed about the 3d Ising 
model using more pedestrian techniques is strong evidence for the validity of the assumption.

Additional evidence for the conformal invariance of the 3d SRI critical point comes from the 
recent Monte-Carlo simulations of the model in the presence of a line defect [46] and in a ball 
geometry [47].

Let us now discuss prospects for a nonperturbative proof of the conformal invariance of the 
3d SRI critical point. Because of the above evidence, we are certain that the model is conformally 
invariant. Still, it would be interesting to find a proof, because it may teach us about the conformal 
invariance of other models where the evidence is as yet lacking.

Rather than deriving everything from scratch, it seems reasonable to allow a proof based on 
some assumptions. One rather minimal and natural set of assumptions is as follows29:

1. The 3d SRI critical point is a unitary quantum field theory, whose correlation functions 
satisfy the Wightman (or Osterwalder–Schrader in the Euclidean) axioms;

2. It is scale invariant, with all local operators having well-defined scaling dimensions;
3. It has a local stress tensor operator—a conserved rank 2 tensor operator of dimension exactly 

D = 3, whose correlation functions satisfy Ward identities .

Because of assumption 2, the problem is often formulated as “Does scale invariance imply con-
formal invariance?”30 As lucidly explained long ago by Polchinski [52], this is not guaranteed in 
this setup. The crucial question is whether the trace of the stress tensor contains a total derivative 
term in addition to terms vanishing at the critical point or at non-coincident points:

T μ
μ ⊃ ∂μV μ (?) (4.33)

The operator V μ is called a virial current. It must be a vector operator of scaling dimension 
exactly D − 1, to match the scaling dimension of Tμν . The appearance of ∂μV μ in T μ

μ does not 
contradict scale invariance, because the extra term vanishes when integrated over the full space, 

28 This section is outside of the main line of reasoning of this paper and can be left out on the first reading.
29 In the future it would be interesting to prove the 3d conformal invariance without any assumptions. For the moment 
we follow the advice of Ennio De Giorgi: “Se non riesci a dimostrare l’enunciato, prendi una parte della tesi e mettila 
nelle ipotesi, e continua così finché non ci riesci.”
30 See [48] for a review and in particular [49–51] for recent nontrivial progress in 4d.
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and does not disturb the scale Ward identity. However, the derivation of special conformal Ward 
identity requires integrating T μ

μ multiplied by xλ, see Eq. (4.13). The extra term then does not 
go away unless Vμ is itself a total derivative, Vμ = ∂νYμν .31

From a modern perspective, then, to check if a theory is conformally invariant it’s enough to 
see if it contains a vector operator of dimension exactly D − 1 which is (a) a singlet under all 
global symmetries, (b) not conserved, and (c) not a total derivative. In weakly coupled examples 
it can be seen by inspection whether such an operator exists. As Polchinski [52] pointed out, the 
ϕ4 theory in D = 4 − ε dimensions does not have any nontrivial Vμ candidate, and hence its IR 
fixed point must be conformally invariant to all orders in perturbation theory.

In the strongly coupled situation one can argue (see e.g. [53–55]) that the (a, b, c) require-
ments cannot generically be satisfied, and thus scale invariance generically implies conformal 
invariance. Indeed, what’s the likelihood that there will be a dimension D − 1 vector which is 
not conserved, given that all non-conserved vectors generically acquire anomalous dimensions? 
This being pretty obvious, the real question is to what extent one can get rid of the genericity 
assumption.

Recently, the problem of showing conformal invariance of the 3d SRI critical point was revis-
ited in [56]. Using an argument phrased in the language of the functional renormalization group, 
the authors arrive at the same conclusion as Polchinski—that scale invariance without conformal 
invariance is only possible if the theory contains a dimension D − 1 global singlet vector V . 
There is little doubt that their vector is the same as the virial current in Polchinski’s argument, 
although this connection is not made explicit in [56].

The rest of the discussion in [56] evolves around trying to show that a vector with dimension 
�V = D − 1 is impossible. First they appeal to genericity. Compared to the above genericity 
argument, they add the following observation: to avoid conformal invariance, a dimension D − 1
vector should exist in the WF fixed point not only for D = 3, but in a whole interval of dimensions 
around 3, since otherwise one could argue conformality in D = 3 by continuity from D near 3.

Second, they also point out that, independently of any theoretical arguments, the dimension of 
the lowest singlet vector can and should be measured in lattice Monte-Carlo simulations. If it’s 
larger than D−1, as it probably is, this will imply conformal invariance. Such a test of conformal 
invariance is probably easier, and more robust, than the checks of its predictions carried out in 
[46,47].

To summarize, there is currently no nonperturbative proof of conformal invariance of the 3d 
SRI model critical point. Yet we are all but sure that it is conformally invariant.

Note added. A third arXiv version of [56] just appeared which presents a proof of a lower 
bound �V � D − 1 + η, based on Lebowitz inequalities. If confirmed true, this would constitute 
a rigorous nonperturbative proof of conformal invariance in the 3d SRI.

5. Conformal invariance of the Gaussian phase

The nonlocal Gaussian theory described by the action (1.2) is also conformal. This is widely 
known in high energy physics,32 and more recently has also been discussed from statistical 

31 For example, the term ∂2ϕ2
0 in T μ

μ did not disturb the derivation of the conformal Ward identity in section 4 because 
it corresponds to Vμ = ∂μ(ϕ2

0 ), a total derivative.
32 There, this theory is sometimes referred to as Mean Field Theory or Generalized Free Field.
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physics perspective. In this section we will review this fact pedagogically, trying to bridge the 
gap between the two communities.

5.1. Direct argument

We will start in the antichronological order. As pointed out in [57], the fractional Laplacian, 
just like the ordinary Laplacian, is covariant under conformal transformations. Namely if x → x′
is a conformal transformation and

φ′(x′) = |∂x′/∂x|−�φ/dφ(x) (5.1)

with �φ given in (1.3), then

L′
σ φ′(x′) = |∂x′/∂x|�φ/d−1Lσ φ(x) . (5.2)

As a result the action (1.2) is invariant under conformal transformations. The proof of (5.2) is 
given in [57] and we will not repeat it here. As usual, covariance under translations, rotations, 
and dilatations is obvious, and a simple calculation establishes covariance under the inversion.

Notice that since we are dealing with a nonlocal theory, there is no reason to expect that 
in d = 2 the global conformal invariance of the action (1.2) gets enhanced to the full Virasoro 
invariance, and indeed this does not happen.33

5.2. Argument from correlation functions

The previous argument shows the invariance of the action. Since the theory is Gaussian, con-
formal covariance of the correlation functions follows. It’s also easy to check the transformation 
properties of the correlation functions directly. This way of proving conformal invariance pre-
dates the previous one. One of us (S.R.) was aware of it at the time of writing [59], and an 
analogous discussion for a nonlocal vector theory appeared in [60].

Let’s start with the two point function of φ. It is given by |x − y|−2�φ , which indeed has the 
form of a two point function of a primary scalar of dimension �φ . The N -point functions of φ
are given by Wick’s theorem, since the theory is Gaussian. A moment’s thought shows that since 
the two point function transforms as it should, the N -point functions will do so as well. So all 
correlation functions of φ are consistent with conformal symmetry.

The theory contains more operators, for example the normal ordered products :φn:. Their 
correlation functions are defined by just leaving out the Wick contractions at coincident points, 
hence they will also be conformally covariant.

Although there are still more operators in addition to the ones considered above, all of them 
can be obtained by taking repeatedly the OPE of φ with itself. Correlation functions of these 
operators will inherit conformal transformation properties from the correlators of φ.34 Hence the 
theory is conformal.

33 Although it’s not essential for this paper, we would like to point out that there are also examples of local 2d the-
ories which have global conformal but not Virasoro invariance. Once such theory is the “biharmonic scalar” with the 
Lagrangian (∂2φ)2. Its stress tensor trace is of the form ∂μ∂νYμν which is enough for global conformal invariance but 
not enough for an improvement to make it traceless and recover full Virasoro, since in 2d one needs Tμ

μ = ∂2Y for the 
latter [52]. See [58,57] for a discussion.
34 See the argument in Appendix B for the WF fixed point.
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5.3. AdS argument

Going further back in time [61,62], an easy way to see conformal invariance of the theory 
(1.2) is from its dual holographic description. This description is given by the free massive scalar 
field � = �(x, z):

SAdS = 1
2

∫
ddx dz

√
g[gAB∂A�∂B� + M2�2] (5.3)

in the d + 1 dimensional AdS space with the additional coordinate z > 0 and the metric35

ds2 = z−2(dxμdxμ + dz2) . (5.4)

The dual theory (5.3) is manifestly invariant under the conformal group SO(d + 1, 1). This is 
because AdS is a symmetric space, and SO(d + 1, 1) is its group of isometries. Since the action 
(5.3) is written using the generally covariant rules, isometries of the underlying space become 
symmetries of the action.

To show that the theory (5.3) is indeed dual, i.e. equivalent, to the nonlocal theory (1.2), we 
must “integrate out” the bulk of the AdS space by solving the equations of motion of the field 
�(x, z), and derive an effective action for its boundary value φb at z = 0. The field �(x, z)
behaves near the boundary as

�(x, z) ∼ zd−�φb(x) , (5.5)

where � is a root of the quadratic equation �(� − d) = M2,

�± = 1
2 (d ±

√
d2 + 4M2) . (5.6)

Picking � = �+, the effective action has the form identical to (1.2) [61,62]36:

Seff ∝
∫

ddx ddy φb(x)φb(y)/|x − y|2� . (5.7)

The range of dimensions � is however not quite the same. In fact M2 should satisfy the so-called 
Breitenlohner–Freedman bound M2 > −d2/4 [63], which allows to reproduce all the dimensions 
above d/2, while in (1.2) we need dimensions in the range (d − 2)/2 < � < d/2. As explained 
in [64], dimensions in this range are reproduced by taking the smallest root � = �−, which in 
this setup requires adding a boundary term in the action (5.3).

Since the original work of [61,62], the above way of thinking about why the nonlocal Gaussian
scalar is conformal has been used numerous times in the high energy physics literature. See 
e.g. [59,65–67] for a partial list of recent references. This theory is very well understood from 
the CFT perspective, e.g. in [65,67] the conformal block decomposition and the φ ×φ OPE have 
been worked out explicitly for any �.

35 This metric is considered fixed, rather than fluctuating like in the conventional AdS/CFT correspondence. This is 
related to the fact that the Gaussian theory does not have a local stress tensor operator.
36 This is the nonlocal part of the effective action. As is well known, the on-shell effective action contains divergent 
local counterterms which are implicitly subtracted here.
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5.4. Caffarelli–Silvestre trick

The idea of the previous argument is to rewrite the nonlocal Gaussian theory as an equivalent 
higher dimensional theory whose conformal invariance is manifest. We will now present a second 
way to implement this idea, based on an observation of Caffarelli and Silvestre [68].

Consider a scalar field � = �(x, y) where the extra coordinate y now takes values in the flat 
Euclidean space of p = 2 − σ dimensions. Hopefully the reader is not disturbed by the fact that 
p is in general fractional. In this space we consider the massless scalar field action:

SCS =
∫

ddx dpy [(∂x�)2 + (∂y�)2] . (5.8)

We will now show that this local action is equivalent to the nonlocal action (1.2).
Let φ(x) be the value of the field � on the d dimensional hyperplane y = 0:

φ(x) = �(x,0) , (5.9)

and consider the effective action for φ obtained by integrating out the rest of the space.
To find it we have to solve the equations of motion of the higher-dimensional theory subject 

to the boundary condition (5.9). It’s clear that we can restrict to the sector of fields radially 
symmetric in the y variable. In this sector the action becomes (z = |y| > 0):

SCS = Sp

∫
ddx dz z1−σ [(∂x�)2 + (∂z�)2] . (5.10)

Recall that Sp is the unit sphere volume in p dimensions. The equation of motion is

∂2
x� + (1 − σ)∂z�/z + ∂2

z � = 0 . (5.11)

The solution decreasing at large z takes in momentum space the form:

�(p, z) = const.(|p|z)σ/2Kσ/2(|p|z)φ(p) . (5.12)

For small z this has an expansion:

�(p, z) = (1 + const.(|p|z)σ + . . .)φ(p). (5.13)

The . . . terms are O(z2) compared to the shown ones and are subdominant in the range of interest 
0 < σ < 2. We integrate by parts in (5.8), pick up the boundary term, and find

SCS = −Sp

∫
ddx z1−σ �∂z�|z→0 ∝

∫
ddp φ(p)|p|σ φ(−p) , (5.14)

which is the nonlocal action (1.2) in momentum space.37

It is now easy to complete the argument for conformal invariance. We started with a mass-
less scalar theory in flat space (5.8), which is conformally invariant in an arbitrary number of 
dimensions. When we construct an effective theory by integrating out the space away from the 
y = 0 hyperplane, we are guaranteed to obtain a theory invariant under the subgroup of the d +p

dimensional conformal group which leaves invariant this hyperplane. This is precisely the d di-
mensional conformal group.

37 The form of this effective action could also be predicted from the following argument. The free scalar � two point 
function depends on the distance as ∝ 1/rd+p−2. The same dependence is inherited by φ when we set y = 0, and we 
recover the expected two point function of the nonlocal scalar field of dimension d − σ .
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It’s interesting to compare this argument with the AdS one in the previous section. The 
effective action computation here and in the AdS case proceed rather similarly. In fact the 
equations of motion of the AdS theory (5.3) can be mapped onto those of (5.10) by defining 
�(x, z) = z−�φ�(x, z). A minor difference is that the on-shell action is finite in the Caffarelli–
Silvestre case, while in the AdS case it needs to be renormalized with boundary counterterms 
which we implicitly subtracted in (5.7).

There is however a big difference in explaining why the equivalent higher-dimensional theory 
is conformally invariant. In the AdS case we appealed to the isometries of the underlying geom-
etry, while in the CS description we use the fact that the massless scalar theory in flat space is 
conformally invariant.

Concerning the prior history of the given argument, Caffarelli and Silvestre noticed that the 
equation of motion (5.11) gives rise to the fractional Laplacian and showed the equivalence of 
the two actions. They also noticed that (5.11) is nothing but the Laplace equations for functions 
radially symmetric in p extra coordinates. The Caffarelli–Silvestre description in the radially 
reduced sector was used by Rajabpour [57] to discuss some aspects of the nonlocal Gaussian
theory. Using the full d + p dimensional description to argue for the conformal invariance of the 
theory seems to be done here for the first time.

6. Conformal invariance of the LRI critical point

We will now present a proof that the LRI critical point is conformally invariant also in the 
nontrivial region 2. After all the preparatory work in sections 4 and 5, the proof looks almost 
inevitable.

The key idea is to rewrite our theory (2.3) as a defect quantum field theory. Namely, according 
to the discussion in section 5.4, we can rewrite the action as38

S = 1
2

∫
dd̄X (∂M�)2 + g0

4!
∫

y=0
ddx �4 . (6.1)

In the first term � is the free scalar Caffarelli–Silvestre field from section 5.4, defined on the d̄ =
d +p dimensional space X = (x, y). The second term represents interaction living on the defect: 
the d-dimensional plane located at y = 0. The number of extra dimensions will be fractional in 
the case of interest (σ near d/2), but in spite of this fact the theory (6.1) makes perfect sense, at 
least in perturbation theory.39

In the theory (6.1) we will consider N -point functions of �(X), G(X1 . . .XN). The correla-
tors of the original theory (2.3) can be obtained by taking the y → 0 limit.

The first part of the proof will be to derive broken scale and conformal Ward identities satisfied 
by the correlators G(X1 . . .XN). We will then discuss how these Ward identities imply conformal 
invariance of the IR fixed point.

38 Normalization of the first term is different from (2.3) where it was fixed via (2.4). This difference is unimportant for 
the proof of conformal invariance.
39 See section 6.4 for a nonperturbative discussion. An introduction to perturbative quantum field theory in non-integer 
dimensions can be found in [24].
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6.1. Ward identities

Crucially, the theory (6.1) is local and so its Ward identities can be derived by a variation of 
the method from section 4. We start by considering the canonical stress tensor:

TMN = ∂M�∂N� − 1
2δMN(∂K�)2 − δ

‖
MNδ(p)(y)

g0

4! �
4 . (6.2)

The indices M,N, . . . will run over the full d̄-dimensional space, μ,ν, . . . over the d-dimensional 
“parallel” subspace, and m,n, . . . over the p-dimensional “perpendicular” subspace. The δ‖

MN is 

the Kronecker delta in the parallel subspace: δ‖
MN = δμν if both indices are parallel, and zero 

otherwise.
Unlike in section 4, here we don’t make a distinction between the bare and renormalized field 

�, because � does not get renormalized: since the interaction term is located on the defect, it 
cannot renormalize the bulk kinetic term. The boundary kinetic term corresponds to an irrelevant 
operator and cannot be generated either.

The next step is to find the divergence and the trace of TMN . Direct computation gives:

∂MTMN = −EN + δ(p)(y)DN , (6.3)

T M
M = −�φE − ε(g0/4!)δ(p)(y)�4 + (1/2 − d̄/4)∂2

K�2 , (6.4)

where we recognize the operators proportional to the equations of motion:

E = �
{
−∂2

K� + δ(p)(y)(g0/3!)�3
}

, EN = ∂N�
{
−∂2

K� + δ(p)(y)(g0/3!)�3
}

,

(6.5)

and a new object DN called the displacement operator. It is given by:

DN = (g0/3!)�3∂n� if N = n (6.6)

is a perpendicular index, and vanishes otherwise. This operator represents an infinitesimal move-
ment of the defect in an orthogonal direction.

Unlike �, the operator �4|y=0 ≡ φ4 appearing in (6.4) is not a finite operator; it will be related 
to a finite renormalized operator [φ4] via a rescaling

φ4 = Z4[φ4] . (6.7)

Contrary to (4.7), in the LRI there is no other operator with which φ4 could mix. The coefficient 
Z4 is easy to compute. For any finite correlation function we have

∂

∂g

∣∣∣
μ=const.

〈. . .〉 = 〈. . .
∫

ddx με[φ4](x)〉 ,

d

dg0
〈. . .〉 = 〈. . .

∫
ddx φ4(x)〉 . (6.8)

On the other hand, differentiating (2.5) with respect to logμ we obtain the relation ∂g0/∂g =
−εg0/β(g). It follows that:

Z4 = −β(g)με/(εg0) , (6.9)

which is identical to the first coefficient in (4.7). Plugging this into (6.4) we obtain:

T M
M = −�φE + (β(g)/4!)μεδ(p)(y)[φ4] + (1/2 − d̄/4)∂2 �2 . (6.10)
K
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We next consider the dilatation and special conformal currents:

DM = TMNXN , CM
L = TMN(2XNXL − δNLX2) . (6.11)

The divergence of the scale current is given by

∂MDM = −XN(EN + δ(p)(y)DN) + T M
M = −XMEM + T M

M . (6.12)

The term proportional to DN is seen to vanish, since either N is a parallel index and then DN = 0, 
or else it’s a perpendicular index and then XNδ(p)(y) = 0. The divergence equation takes the 
same form as (4.10), and we obtain the scale Ward identity in full analogy to (4.14):

N∑
i=1

[Xi.∂Xi
+ �φ]G(X1 . . .XN) = β(g)

με

4!
∫

ddx G(X1 . . .XN ; [φ4](x)) . (6.13)

Analogously let’s analyze the divergence of the special conformal current

∂MCM
L = −(2XNXL − δNLX2)(EN + δ(p)(y)DN) + 2XLT M

M . (6.14)

We would like to derive a Ward identity corresponding to special conformal transformations 
leaving the defect invariant, i.e. when L = λ is a parallel index. The extra term proportional 
to DN then drops out just as for the scale current, since DN is nontrivial only if N = n is 
a perpendicular index. Then δnλ = 0, while XnXλ vanishes when multiplied by δ(p)(y). We 
therefore have the same divergence equation as (4.11), and an analogous Ward identity40:

N∑
i=1

[
(2XM

i Xλ
i − δMλX2

i )
∂

∂XM
i

+ 2�φXλ
i

]
G(X1 . . .XN)

= 2β(g)
με

4!
∫

ddx xλ G(X1 . . .XN ; [φ4](x)) . (6.15)

Now, the correlators G(X1 . . .Xn) behave continuously in the limit y → 0. This can be seen 
diagram by diagram in perturbation theory. It’s also closely related to the fact that � does not 
acquire anomalous dimension, and thus its bulk-to-defect OPE is non-singular (see a related 
discussion in section 6.3 below).

Thus, if one is primarily interested in the correlators at the defect, which are the correlators 
of the original theory, then one may set y = 0 in (6.13) and (6.15), obtaining restricted Ward 
identities satisfied by the correlators of the original theory (2.3):

N∑
i=1

[xi.∂xi
+ �φ]G(x1 . . . xN) = β(g)

με

4!
∫

ddx G(x1 . . . xN ; [φ4](x)) , (6.16)

N∑
i=1

[
(2x

μ
i xλ

i − δμλx2
i )

∂

∂x
μ
i

+ 2�φxλ
i

]
G(x1 . . . xN)

= 2β(g)
με

4!
∫

ddx xλ G(x1 . . . xN ; [φ4](x)) . (6.17)

40 It’s not hard to convince oneself, like we did in section 4, that various boundary terms appearing when integrating by 
parts in the derivation of the Ward identities vanish by a good margin.
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At this point, if one wishes, one may altogether forget about the construct of the extra dimensions. 
Notice however that without this construct, it would remain pretty mysterious why the nonlocal 
LRI theory should satisfy Ward identities which are almost identical in form to the ones satisfied 
by the local SRI.41

6.2. From the Ward identities to conformal invariance

We will now discuss how the broken Ward identities imply that the IR fixed point is scale 
and conformally invariant. Naively this follows from the fact that β(g) multiplying the breaking 
terms vanishes at the fixed point. However, as mentioned in section 4 for the SRI case, this is 
too quick. A careful argument must show that the integrals multiplying β(g) do not overcome 
the suppression. For the SRI, this was done in detail in section 4.1, and a modification of that 
argument will work for the LRI.

Let us first consider the y = 0 correlators. The required modifications are then minor. The 
proof proceeds via the OPE φ × [φ4] ⊃ φ. Using the scale Ward identity (6.16), rewritten as 
a CS equation, one derives scale invariance, and also obtains an integral constraint on the OPE 
kernel. There is a simplification due to the fact that �φ does not depend on g in the LRI. Thus the 
LRI analogue of Eq. (4.26) will have 0 rather than O(1) in the RHS. One then uses the integral 
constraint to show that the RHS of the special conformal Ward identity (6.17) is small in the IR. 
This part of the argument is identical to that for the SRI.

As for the correlators G(X1 . . .XN) with fields inserted away from the defect, it seems a bit 
awkward to generalize the SRI argument to this case.42 Fortunately there is an easier alternative 
argument: conformal invariance of these correlators can be seen to follow from two facts: (1) that 
for y > 0 they satisfy the (conformally invariant) Laplace equation, and (2) that their boundary 
values at y = 0 are conformally invariant, as we already proved.43

Furthermore, conformal invariance of the composite operator correlators should now follow 
from by considerations based on the OPE. This is especially obvious for the bulk correlators, 
since one then needs only the bulk-to-bulk OPE, identical to that of the free theory. Composite 
operator correlators on the defect can be obtained from those away from the defect via the bulk-to 
defect OPE (see the next section). Alternatively, one can access such correlators via the OPE of 
fundamental fields on the defect. This last way of arguing would be completely analogous to the 
one for the SRI given in Appendix B.

6.3. Bulk-to-defect OPE and the anomalous dimensions

Up to now we were using the theory (6.1) as a formal vehicle for proving things about the 
LRI. We would like to demonstrate, by a simple example, that this formulation can also be used 
for concrete computations.

41 It is possible that the Ward identities (6.16), (6.17) can be proved by endowing the LRI theory with some sort of 
nonlocal stress tensor operator. See [57] for steps in this direction for the Gaussian case. Still, the most natural path to 
the nonlocal stress tensor lies through the Caffarelli–Silvestre construction.
42 One would have to consider an OPE of the [φ4] operator on the defect with �(x, y) in the bulk. The cases of y small 
or large compared to μ−1

c and the distances among xi appear to require separate treatments.
43 This argument should be applied to the connected part of the bulk correlators, which satisfy the Laplace equation in 
each variable Xi independently, without contact terms in the bulk.
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One additional concept which will be necessary in this regard is the bulk-to-defect OPE.44 Let 
O(x, y) be a dimension � bulk operator of the theory. The bulk-to-defect OPE says that inside 
correlation functions insertions of this operator can be replaced by an infinite series of operators 
Ok inserted at the defect point x. By dimensional analysis, this expansion will take the form

O(x, y) =
∑

k

f k(g0y
ε)

|y|�−�
(0)
k

O(0)
k (x) , (6.18)

where the index (0) marks bare defect operators and their classical dimensions. For simplicity 
we only consider scalar operators and we will ignore operator mixing. The renormalized bulk-
to-defect OPE takes the form

O(x, y) =
∑

k

f̃ k(yμ,g)

|y|�−�
(0)
k

[Ok](x) , (6.19)

with the renormalized defect operators defined as

O(0)
k = Zk[Ok] , (6.20)

whereas the bulk operators do not renormalize. Clearly, then

μ
d

dμ
f̃ k(yμ,g) = γk(g)f̃ k(yμ,g) , (6.21)

which ties the anomalous dimension of the defect operators to the bulk-to-defect OPE. At the IR 
fixed point the bulk-to-defect OPE will take the form:

O(x, y) =
∑

k

ck

|y|�−�IR
k

[Ok](x) . (6.22)

This OPE will govern the asymptotics of any correlation function of O(x, y) in the limit when y
is much smaller than the x distance between the operators.

As an example we consider the two point function of �n, with both operators inserted away 
from the defect. At O(g) this correlation function is given by

〈�n(X1)�
n(X2)〉 = n!

|X1 − X2|n�φ

{
1 − g

n(n − 1)

4
(x2

12 + y2
12)

2I [x12, y1, y2]
}

, (6.23)

I [x12, y1, y2] =
∫

ddz[(z − x12)
2 + y2

1 ]−2�φ [z2 + y2
2 ]−2�φ . (6.24)

The I integral is finite for y1,2 > 0. We can evaluate it using Feynman parameters:

I [x12, y1, y2] = πd/2
(4�φ − d/2)


(2�φ)2

×
∫ 1

0
du [u(1 − u)]2�φ−1

[
u(1 − u)x2 + uy2

1 + (1 − u)y2
2

]d/2−4�φ

.

(6.25)

To simplify, let’s consider the special case y1 = y2 = y. We Taylor expand in x2, perform the u
integral for each term, and then resum the terms in the Taylor series. This leads to

44 For a similar concept of bulk-to-boundary OPE in boundary CFTs, see for example [69,70].
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I [x12, y, y] = πd/2

(
4�φ − d

2

)

(4�φ)

yd−8�φ
2F1

(
2�φ,4�φ − d

2
;2�φ + 1

2
;− x2

12

4y2

)
.

(6.26)

We are interested in the limit y � x12. Because everything is finite we may set ε = 0, so �φ =
d/4. For small y we find then that

I [x12, y, y] = −Sd

1

xd
12

[γ + ψ(d/2) + log(y2/x2
12)] + O(y2) . (6.27)

We can substitute this result in the full correlation function and compare this with the behavior 
expected from the bulk-to-defect OPE:

〈�n(x1, y)�n(x2, y)〉
y�x12
−−−−→ Cn

y2�−2�̂x2�̂
12

. (6.28)

Here � = n�φ , while �̂ is the dimension of the first defect operator, i.e. [φn]. To the lead-
ing order in ε that we are working, (6.27) should match (6.28) expanded in the limit of small 
anomalous dimension γn = �̂ − �. We also have to set g → g∗ in (6.23). We obtain:

Cn = n!
[
1 + g∗Kn(γ + ψ(d/2)) + O(ε2)

]
, γn = g∗Kn + O(ε2) , (6.29)

where Kn is the same as in (2.17). The anomalous dimension result agrees with (2.18). It is 
curious to see the usually scheme-dependent terms γ and ψ(d/2) appear in the squared bulk-to-
defect OPE coefficient Cn.

6.4. Beyond perturbation theory

Finally, we would like to discuss, very briefly and in parallel with section 4.2 for the SRI, the 
prospects of a nonperturbative proof of conformal invariance of the LRI critical point.

First of all one would have to be convinced that the extra-dimensional defect QFT formulation 
(6.1) makes sense beyond perturbation theory.45

Alternatively, one can try to get rid of the fractional dimensions altogether by restricting the 
y > 0 theory to the radially symmetric sector described by the reduced action (5.10), which is 
d +1 dimensional. This action should still contain the conformal symmetry of the original action. 
The disadvantage of this formulation is the explicit dependence of the action on y. On the other 
hand it’s manifestly nonperturbatively well defined.

Whatever the formulation one uses, one will be reduced to studying the Ward identities for the 
corresponding stress tensor operator. Analogously to section 4.2, one can ask: what if the stress 
tensor trace contains the following term:

T M
M ⊃ δ(p)(y)∂μvμ (?) , (6.30)

where vμ is a dimension d − 1 vector operator on the defect—a defect virial current. By assump-
tion, vμ is not identically conserved. Like in the discussion following the analogous Eq. (4.33), 
we see that unless vμ is a total derivative its presence precludes conformal invariance of the 
correlation functions, while preserving their scale invariance.

45 For a collection of recent work trying to make nonperturbative sense of various aspects of quantum field theory in 
fractional number of dimensions see [2,71,72].
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So, can our theory contain a defect vector which has dimension exactly d − 1 and is not a 
total derivative? Generically, this appears unlikely (with or without the total derivative clause). 
In perturbation theory, there was no candidate for such an operator (and so it’s not surprising that 
no such term is visible in (6.10)). To establish this rigorously and nonperturbatively appears as 
hard as the corresponding problem for the SRI.

We finally note that in the context of boundary rather than defect quantum field theory the 
question whether scale invariance implies conformality was recently discussed in [73].

7. Conclusions

The general problem of scale versus conformal invariance is continuing to provide food for 
thought. In this paper we have discussed this issue for the specific theory corresponding to the 
LRI at criticality. Since this model most notably does not have a local stress tensor, even the stan-
dard (genericity) arguments are invalid, leaving the question of scale versus conformal invariance 
hanging in midair.

In the first part of the paper we have provided nontrivial evidence for conformal invariance of 
the LRI by showing that the 〈φφ3〉 and 〈φ2φ4〉 two point functions vanish at criticality, at least up 
to terms of O(ε3). In the second part we were able to prove conformal invariance at the critical 
point to all orders in perturbation theory. The salient point of the proof was the construction of the 
LRI model as a defect theory in an auxiliary higher-dimensional space; this allowed us to work 
with a higher-dimensional stress tensor and construct a proof analogous to the one used for the 
Wilson–Fisher fixed point. Much like the SRI, it is plausible that the LRI is also nonperturbatively 
conformally invariant.

What does our proof teach us about general long-range lattice models? First of all, the models 
that have an epsilon expansion starting from a generalized free theory, like the long-range O(N)

or Potts models,46 will be conformally invariant at their critical points to all orders by simple 
extensions of our proof.47

In hindsight it is now also easy to cook up long-range models which will not be conformally 
invariant. The simplest one is based on a vector rather than a scalar. The Gaussian long-range 
action then has two terms consistent with rotation invariance. Equivalently, the vector two point 
function also has two terms:

〈Bμ(x)Bν(0) = (aδμν + bxμxν/x2)/|x|2�B . (7.1)

This agrees with the two point function of a conformal primary vector for b/a = −2, and with 
that of a derivative of a scalar primary for b/a = −2�B . For all the other ratios this Gaussian
model will not be conformal [60].48 Let us now perturb the Gaussian theory by a quartic local 
term (BμBμ)2 and flow to the IR fixed point. We conjecture that this fixed point will be an 
interacting scale invariant theory without conformal invariance. It would be interesting to check 
this by explicit epsilon expansion computations of two point functions, like we did in section 3.

46 The q-component Potts model has a Landau–Ginzburg description via a (q − 1)-component scalar field with quar-
tic couplings preserving Sq symmetry [74]. This description is trivially generalized to the long-range case. The phase 
transition is second order if the Sq -invariant cubic operator is irrelevant at the IR fixed point.
47 Recall once again that in 1 + 1 dimensions conformal invariance without a stress tensor implies a global SO(3, 1)

invariance, not the full Virasoro symmetry.
48 One can also reproduce this theory à la Caffarelli–Silvestre from an auxiliary vector theory in a higher-dimensional 
space. The auxiliary theory action has two terms (∂MBN)2 and (∂MBM)2. As is well known, such a vector theory 
without gauge invariance (“theory of elasticity”) is not conformally invariant [75,53].
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In recent years the use of the conformal bootstrap has emerged as an excellent tool to analyze 
CFTs in various dimensions [14]. The main ingredients in this approach are the conformal block 
decomposition of four point functions and the associated crossing symmetry equations, which all 
follow directly from conformal invariance (see e.g. [54]). The present work therefore opens the 
door towards an analysis of the LRI using these methods. Such an analysis would be completely 
non-perturbative, and is likely to result in a high-precision determination of its critical exponents.

With an eye towards the conformal bootstrap let us finally discuss the critical point of the 
LRI from the perspective of an ordinary CFT. Firstly, the LRI distinguishes itself from the more 
familiar, local, CFTs by the absence of a local stress tensor operator. Secondly, we expect a one-
dimensional family of solutions to the crossing symmetry, parametrized by the exactly known 
scaling dimension of φ. Thirdly, our analysis uncovered an interesting fact that the second Z2

odd primary operator φ3 is related to φ through the nonlocal EOM: φ3 ∝ Lσ φ. This fixes the 
scaling dimension of φ3 to be �φ + σ . Curiously, this can be equivalently rewritten as

�φ3 = d − �φ . (7.2)

This identifies φ3 as the so-called ‘shadow’ operator of φ, which by definition transforms in a 
conformal representation with the same value of the quadratic Casimir as φ. The shadow opera-
tors often appear in discussions of conformal blocks (see e.g. [76]), but usually as a formal tool, 
since they do not belong to the local operators of the theory. On the contrary, Eq. (7.2) means 
that both φ and its shadow are good local operators of the LRI critical point.49

One may wonder if the nonlocal EOM also implies an exact proportionality relation between 
the coefficients with which φ and φ3 appear in any OPE. Unfortunately, this appears not to be the 
case. Using the nonlocal EOM once, we can easily relate the three point functions of φ3 to those 
of φ. However, we then have to relate the normalizations of the φ and φ3 two point functions. 
This requires using the nonlocal EOM twice, subtracting the unperturbed φ two point function 
as in (3.37). The final answer then depends on the relative normalization of 〈φφ〉 and 〈φφ〉S0 , 
which is unknown in general. See Appendix C.

We conclude with a brief comment about the limit σ → σ∗. What happens with the nonlocal 
CFT describing the LRI critical point when we approach this limit from below? As we discussed 
in the introductions, for σ > σ∗ the LRI critical point is supposed to be in the SRI universality 
class. It would be simplest if all correlation functions continuously transitioned to the SRI ones 
in the limit. However, this seems problematic in view of the presence of φ3 as a primary in the 
LRI CFT.

Consider for example the correlation function 〈φ φ2 φ φ2〉. In the LRI, its conformal block 
decomposition is expected to contain the contributions of two relevant Z2 odd scalars: φ and φ3. 
On the other hand, ϕ3 is a descendant in the CFT describing the WF fixed point, while the second 
Z2 odd primary operator (ϕ5) is irrelevant. It could be that φ3 decouples in the σ → σ∗ limit, but 
based on the discussion in Appendix C this also seems unlikely. We thus are led to conclude that 
there is a discontinuity in the transition from the LRI to the SRI correlation functions. It would 
be very interesting to investigate this in more detail.

49 Other examples of theories with pairs of operators satisfying the “shadow relation” �1 +�2 = d can be found among 
SUSY CFTs. Namely, such a relation can emerge if O1 is a chiral primary of dimension d/n where n is an integer, and 
O2 = (O1)n−1. We thank Leonardo Rastelli for sending us a list of such theories. One simple example is the N = 2
3d Ising model where n = 3. What sets LRI apart is that the shadow relation appears as a consequence of the nonlocal 
EOM.
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Appendix A. The hard diagram

In this appendix we will discuss the computation of the coefficient P2c in (3.43), which comes 
from the last diagram in (3.41). We need to evaluate the integral∫

ddy ddz
1

|x − y|2α

1

|x − z|2α

1

|y − z|2α

1

|y|2β

1

|z|2β
= ϒ

|x|3d/2−7ε/2
, (A.1)

where α = �φ = (d − ε)/4, β = 2α. We will show that

ϒ = 4πd

(− d

4

)
/


(
3d
4

)
+ O(ε) . (A.2)

To get from here to P2c one needs to multiply by the symmetry factor 2733/(4!)2 = 6.
We will present two methods to compute ϒ : one using Mellin–Barnes representations and 

another expansions into Gegenbauer polynomials.

A.1. Mellin–Barnes method

The y integral in (A.1) has the following Mellin–Barnes (MB) representation ([77], Eq. (24)):

Iy ≡
∫

ddy
1

|x − y|2α

1

|y − z|2α

1

|y|2β

= π
d
2

|z − x|d−2ε

∫∫
dsdt

(2πi)2

M(s, t)


(ε)

(

d−ε
4

)2



(
d−ε

2

)
( |x|2

|z − x|2
)s ( |z|2

|z − x|2
)t

, (A.3)

where

M(s, t) = 
(−s)
(−t)


(
−d

4
+ 3ε

4
− s

)



(
−d

4
+ 3ε

4
− t

)



(
s + t + d − ε

2

)

× 


(
s + t + d − 2ε

2

)
. (A.4)

One way to get this representation is to introduce an extra factor |y − w|−2ε into the integral Iy . 
The resulting integral Ĩy is then conformal as the exponents sum to 2d . Its MB representation is 
given by Symanzik’s formula (Eq. (5) in [78]). Eq. (A.3) follows by taking the limit w → ∞ in 
which the conformal cross-ratios in Symanzik’s formula tend to |x|2/|z − x|2 and |z|2/|z − x|2.

The contours in (A.3) run from −i∞ to i∞ separating poles of the 
 functions whose ar-
guments involve positive and negative s, t . We can take straight-line contours s = s0 + iR and 
t = t0 + iR, where (s0, t0) lies in the small red triangle in Fig. 2. E.g. s0 = t0 = (− d + 3ε ) − ε
4 4 8
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Fig. 2. The horizontal, vertical, and diagonal straight lines show the location of the poles in (A.4). In this plot d = 3
and ε = 0.3, but the same picture is valid for all d of interest and ε � 1. Only the leading poles are shown; each line 
is accompanied by a series of parallel lines spaced by 1 in the direction shown by short arrows. The real parts (s0, t0)

of the integration contours in the MB representation (A.3) must lie in the small red triangle. On the other hand (s0, t0)

must lie in the large grey triangle for (A.7) to be satisfied. The dashed arrow shows a possible contour shift, crossing two 
horizontal pole lines at t = − d

4 + 3ε
4 and t = 0. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.)

will do. That straight line contours can be chosen is related to the fact that the integral Iy is both 
UV and IR convergent and does not require analytic continuation.

We must now compute the integral over z, which is of the form∫
ddz

1

|z|2�1 |z − x|2�2

= π
d
2


 (�1)
 (�2)



(
�1 + �2 − d

2

)
|x|2(�1+�2− d

2 )


(d
2 − �1)
(d

2 − �2)


(2h − �1 − �2)
, (A.5)

with

�1 = (d − ε)/2 − t , �2 = 3d/4 − 5ε/4 + s + t . (A.6)

However, there is an issue. In order to commute the integral over z with the MB integral, we 
must make sure that the z integral converges in the ordinary sense for all values of s, t in the 
integration contour. The z integral converges for

0 < Re(�1),Re(�2) < d/2, Re(�1 + �2) > d/2 , (A.7)

while for the other parameters it’s defined by analytic continuation. This condition is violated by 
the above choice of contour. The solution is to shift the contour before doing the z integral. One 
possible shift is indicated in Fig. 2. The t contour is shifted up so that it crosses the horizontal 
line of poles at t = −d

4 + 3ε
4 and t = 0 and ends up in the bulk of the allowed grey triangular 

region. The new t0 satisfies the condition 0 < t0 < − d + 3ε + 1.
4 4
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After this contour shift, we perform the z integration and obtain

ϒ = πd


(ε)

(

d−ε
4

)2



(
d−ε

2

) (I1 + I2 + I3) , (A.8)

where

I1 =
∫∫

dsdt

(2πi)2
M̃(s, t) , (A.9)

I2 = −
∫

ds

2πi
Res

t=− d
4 + 3ε

2
M̃(s, t) , (A.10)

I3 = −
∫

ds

2πi
Rest=0M̃(s, t) , (A.11)

M̃(s, t) =M(s, t) ×



(
3d
4 − 7ε

4 + s
)



(

ε
2 + t

)



(
− d

4 + 5ε
4 − s − t

)



(
d−ε

2 − t
)



(
3d
4 − 5ε

4 + s + t
)



(− d

4 + 7ε
4 − s

) . (A.12)

The I2,3 come from the pole lines crossed when shifting the contour. Notice that all the Ii inte-
grals converge rapidly as the 
’s decay exponentially in the imaginary direction.

Let us now take the ε → 0 limit of (A.8). Because of the explicit 
(ε)−1 prefactor, we are 
only interested in obtaining the ε poles of the Ii ’s.

The contour of integration in the double MB integral I1 was chosen serendipitously so that it 
remains O(1) away from any 
 function pole as ε → 0. Because of this I1 = O(1) and does not 
contribute to the leading asymptotics of ϒ .

For the second integral we have:

I2 ≈ 

(

d
4

)



(− d
4

)



(
3d
4

) ∫
ds

2πi

[
(−s)]2

(

3d
4 + s

)



(
d
2 + s

)

×



(
d
4 + s − ε

4

)



(
d
4 + s + ε

4

)



(
− d

4 − s + 3ε
4

)



(− d
4 − s + 7ε

4

) . (A.13)

Here we kept the ε dependence only in the last group of factors which become singular as ε → 0
because of the position of the contour at s = − d

4 + 3ε
4 − ε

8 . By shifting the contour to the right 
of s = − d

4 + 3ε
4 we can arrange so that the new position of the contour remains O(1) from any 

pole. Picking up the contribution of the crossed pole, we get:

I2 = 

(

d
4

)2



(
d
2

)



(− d
4

)



(
3d
4

) 
(ε/2) + O(1) . (A.14)

Apart from an explicit factor of 
(ε/2), in the rest of I3 we can set ε to zero. We get:

I3 ≈ 

(

ε
2

) 

(− d

4

)



(
d
2

) ∫
ds

2πi

(−s)


(− d
4 − s

)



(
d
2 + s

)2

= 

(

ε
2

) 

(− d

4

)



(
d
2

) × 

(

d
4

)2



(
d
2

)2



(

3d
) . (A.15)
4
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Barnes’ lemma was used here to express the integral (the contour in the integral passes between 
s = −d/2 and s = −d/4, separating the 
 function poles with positive and negative s in the 
argument). Therefore for I3 we get the same answer as for I2 in (A.14).

Finally, plugging the found values of I2,3 into (A.8), we obtain (A.2).

A.2. Gegenbauer polynomial method

This method expands massless propagators like 1/|x − y|2α into powers of |x|/|y| or the 
inverse, depending on whether |x| < |y| or |y| < |x|, times angular factors which are Gegenbauer 
polynomials. We will use it in a version explained by Kotikov in [79,80], where we refer for 
notation. The key equation is (3) from [80], which we rewrite as (x̂ = x/|x|):

1

|x − y|2α
= 1

(|x||y|)α
∞∑

n=0

Cα
n (x̂ŷ)T α+n, T = min(|x|/|y|, |y|/|x|) . (A.16)

Here the naturally appearing Gegenbauer polynomial is Cα
n , while it’s convenient to have Cλ

n ’s 
with λ = d/2 − 1 for subsequent integration. To pass from α to λ we use (5) of [80]:

Cα
n (t) =

[n/2]∑
k=0

Cλ
n−2k(t)

(n − 2k + λ)
(λ)

k!
(α)


(n + α − k)
(k + α − λ)


(n + λ + 1 − k)
(α − λ)
. (A.17)

Substituting back in (A.16) we find, in agreement with (3) in [81]:

1

|x − y|2α
= 1

(|x||y|)α

(λ)


(α)

∞∑
n=0


(n + α)


(n + λ)
Cλ

n(x̂ŷ)T n+α
2F1(n + α,α − λ,n + λ + 1, T 2) .

(A.18)

Finally (and this is Kotikov’s trick) let us represent Gegenbauers as the products of symmmetric 
traceless tensors, eq. (7) of [80]:

Cλ
n(x̂ẑ) = 2n
(n + λ)

n!
(λ)

xμ1...μnzμ1...μn

(|x||z|)n . (A.19)

We obtain

1

|x − y|2α
=

∞∑
n=0

xμ1...μnyμ1...μn

(|x||y|)α+n

∞∑
k=0

Wα
n,kT

n+2k+α , (A.20)

Wα
n,k = 2n

n!
1


(α)


(n + α + k)(α − λ)k

k!(n + λ + 1)k
. (A.21)

A.2.1. Integration rules
In this section parameters α and β are arbitrary, not necessarily the same as in our integral 

(A.1). Denote Dx = ddx/(2π)d , (n) = μ1 . . .μn, θx,y = θ(x2 − y2). We will need the following 
integrals, see (11), (12), (14), (15) of [80]:∫

Dx
x(n)

x2α(x − y)2β
θx,y = y(n)

|y|2(α+β)−d
M1(n,α,β) ,

∫
Dx

x(n)

x2α(x − y)2β
θy,x = y(n)

|y|2(α+β)−d
M2(n,α,β) , (A.22)



282 M.F. Paulos et al. / Nuclear Physics B 902 (2016) 246–291
and ∫
Dx

x(n)

x2α(x − y)2β
θx,z = y(n)

{
θy,z

|y|2(α+β)−d
K(n,α,β)

+
∞∑

m=0

1

|z|2(α+β)−d

[(
y2

z2

)m

L1(m,n,α,β) θz,y −
(

z2

y2

)m+β+n

L2(m,n,α,β) θy,z

]}
,

∫
Dx

x(n)

x2α(x − y)2β
θz,x = y(n)

{
θz,y

|y|2(α+β)−d
K(n,α,β)

−
∞∑

m=0

1

|z|2(α+β)−d

[(
y2

z2

)m

L1(m,n,α,β)θz,y −
(

z2

y2

)m+β+n

L2(m,n,α,β)θy,z

]}
.

(A.23)

Here (ω = 1/(4π)d/2):

K(n,α,β) = ωAn,0(α,β) ,

L1(m,n,α,β) = ω
B(m,n|β,λ)

m + α + β − d/2
, M1(n,α,β) =

∞∑
m=0

L1(m,n,α,β) ,

L2(m,n,α,β) = ω
B(m,n|β,λ)

m − α + n + d/2
, M2(n,α,β) =

∞∑
m=0

L2(m,n,α,β) , (A.24)

while An,0(α, β) and B(m, n|β, λ) are given by

An,0(α,β) = an(α)a0(β)

an(α + β − d/2)
, an(α) = 
(d/2 − α + n)


(α)
,

B(m,n,β,λ) = 
(m + n + β)(β − λ)m

m!
(m + n + d/2)
. (A.25)

It’s possible to perform the summation in the definitions of M1,2, with the result expressible in 
terms of 3F2’s at z = 1:

M1(n,α,β) = − 21−dπ−d/2
(n + β)


(β)(−2α − 2β + d)

(

1
2 (d + 2n)

)
× 3F2 (−d/2 + β + 1, n + β,−d/2 + α + β;d/2 + n,−d/2 + α + β + 1;1) ,

M2(n,α,β) = 21−dπ−d/2
(n + β)


(β)(−2α + d + 2n)

(

1
2 (d + 2n)

)
× 3F2 (d/2 + n − α,−d/2 + β + 1, n + β;d/2 + n,d/2 + n − α + 1;1) .

(A.26)

A.2.2. Computation
Let’s start with the integral in y:∫

Dy
1

|x − y|2α|y − z|2α|y|2β
. (A.27)

We will expand the |x − y| propagator. (We checked that expanding the |y − z| propagator gives 
the same result.) After the expansion we get
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∫
Dy

∑
n,k

x(n)y(n)Wα
n,k|y − z|−2α(|x|−2α−2k−2n|y|−4α+2kθx,y + |x|2k|y|−6α−2k−2nθx,y) .

(A.28)

All the integrals can be done using Eq. (A.23), producing terms of the form x(n)z(n) times θx,z

or θz,x times powers of |x| and |z|. We will then multiply this by

|x − z|−2α|z|−2β (A.29)

and do 
∫

Dz, using (A.22). The arising products x(n)x(n) can be reduced using (7) of [80]:

x(n)x(n) = fn|x|2n, fn = (2λ)n/[2n(λ)n] . (A.30)

The end result will collapse to an infinite series of terms all proportional to |x| to the same power, 
and we have to sum the series to get the prefactor.

Let’s supply the details. Integrating the θx,y term in (A.28) we get∑
n,k

x(n)z(n)Wα
n,k

{
|x|−2α−2k−2n|z|−6α+d+2kK(n,2α − k,α)θx,z

−
∑
m

|x|−8α+d−2m−2n|z|2mL1(m,n,2α − k,α)θx,z

+
∑
m

|x|−6α+d+2m|z|−2α−2m−2nL2(m,n,2α − k,α)θz,x

}
. (A.31)

Now let’s specialize to α = (d − ε)/4. We will only be interested in extracting the leading depen-
dence in the ε → 0 limit. As we will see, the end results is finite in this limit: 1/ε poles which 
appear at the intermediate steps of the computation cancel or get multiplied by O(ε) coefficients 
at later stages.

It’s interesting to trace how these potential 1/ε terms disappear. From (A.28), we can expect 
a 1/ε dependence in the integral of the θx,y term when k = n = 0. In (A.31), this divergence 
is present in the K terms for n = k = 0 and in the L2 term for n = k = m = 0, with the same 
leading coefficient. Gathering these divergent terms, we have:

21−dπ−d/2


(d/2)ε
|x|−2a |z|−2a(|z|εθx,z + |x|εθz,x) . (A.32)

This grouping makes it easy to see that in the subsequent integration in z these terms will be 
multiplied by an O(ε) coefficient, giving an O(1) contribution to the final answer. This can be 
checked explicitly in the formulas below.

Analogously, the integral of the θy,x terms in (A.28) gives:∑
n,k

x(n)z(n)Wa
n,k

{
|x|2k|z|−8α+d−2k−2nK(n,3α + k + n,α)θz,x

+
∑
m

|x|−8α+d−2m−2n|z|2mL1(m,n,3α + k + n,α)θx,z

−
∑
m

|x|−6α+d+2m|z|−2α−2m−2nL2(m,n,3α + k + n,α)θz,x

}
. (A.33)

None of these terms are singular in the ε → 0 limit.
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Summing (A.31) and (A.33), multiplying by (A.29) and doing 
∫

Dz, we obtain50:

ϒ = (2π)2d
∑
n,k

fnW
α
n,k

{
[K(n,2α − k,α)M2(n,5α − d/2 − k,α)

+ K(n,3α + k + n,α)M1(n,6α − d/2 + k + n,α)]
+

∑
m

[L2(m,n,2α − k,α)M1(n,3α + m + n,α)

− L2(m,n,3α + k + n,α)M1(n,3α + m + n,α)

− L1(m,n,2α − k,α)M2(n,2α − m,α)

+ L1(m,n,3α + k + n,α)M2(n,2α − m,α)]
}

. (A.34)

Among the M1 and M2 coefficients here, the only one which can become singular as ε → 0 is 
M2(n, 2a − m, α). The terms with this coefficient came from the integration of the second terms 
in (A.31) and (A.33). The singularity happens only for m = n = 0, and is given by:

−2−2dπ−d

(− d

4 + k + 1
)



(
d
4 + k

)
εk!
 (

1 − d
4

)



(
d
4

) [



(
d
2

)]2 (
d
2

)
k

[
− 2

d − 4k
+ 1

d + 2k

]
. (A.35)

MATHEMATICA sums the series in k to a product of 
 functions, FullSimplify’ed to zero.
Denote the terms associated with the six lines of (A.34) as C(i), i = 1 . . .6. We have:

lim
ε→0

ϒ = I1 + I2 + J1 + J2 + J3 + J4 , (A.36)

I1 = C
(1)
k=n=0 + C

(3)
k=n=m=0|ε→0 ,

I2 =
∑

k
[C(5) + C(6)]n=m=0|ε→0 ,

J1 =
∑

(k,n)�=(0,0)
C(1)|ε→0 ,

J2 =
∑

(k,n,m)�=(0,0,0)
C(3)|ε→0 ,

J3 =
∑

k,n,m
C(4)|ε→0 ,

J4 =
∑

k,n,m:(n,m)�=(0,0)
C(5) + C(6)|ε→0 .

We omitted C(2) as it vanishes for ε → 0. We also took into account the above discussion about 
the separation of the 1/ε poles. The I1 is finite for ε → 0. In I2, the individual terms are ∼ 1/ε

with coefficients which sum to zero as we mentioned above. So we can drop these singular parts 
and sum the O(ε0) pieces. The Ji series are manifestly finite as ε → 0.

We used (A.36) to perform a numerical check of (A.2) for a few values of d . Although the 
representation does not converge very rapidly, including 200 terms in the single series and terms 
with n, k, m up to 40 in the double and triple series, we found an agreement within one percent 
or better. This check complements the MB result from the previous section.

50 The factor (2π)2d comes from the definition of Dx.
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Appendix B. Conformal invariance of composite operators

We would like to discuss to what extent conformal invariance of the correlators of ϕ can be 
used to show conformal invariance of the composite operators, as mentioned in section 4.

We will use the fact that composite operators can be obtained by fusing ϕ’s via the OPE. 
The OPE is well established in perturbation theory [24]. Here we will use it in the IR where all 
operators acquire their fixed point dimensions. So we really set λ = λ∗. Let’s start by considering 
a simple example—the operator ϕ2.51 In the IR region the relevant OPE takes the form (� ≡ �ϕ , 
�2 ≡ �ϕ2 )52:

ϕ(x)ϕ(0) = |x|−2�(1 + |x|�2ϕ2(0) + . . .) . (B.1)

This equation can be used to determine correlation functions of ϕ2 if correlators of ϕ are known. 
Indeed consider the correlator

〈ϕ(x1)ϕ(x2) . . .〉 . (B.2)

We then have:

〈ϕ2(x1) . . .〉 = lim
x2→x1

|x12|2�−�2(〈ϕ(x1)ϕ(x2) . . .〉 − |x12|−2�〈. . .〉) . (B.3)

This limit should be understood as x1,2 becoming much closer to each other than to any other 
insertion.

Now, Eq. (B.3) implies that correlators of ϕ2 are conformally covariant. Indeed, under a con-
formal transformation x → f (x) both terms in the RHS acquire the same factor

[J (x1)J (x2)]−�2/2 ≈ J (x1)
−�2 , (B.4)

where J = |∂f/∂x|1/D is the x-dependent scale factor. This is precisely the transformation rule 
of a primary of dimension �2.

The above argument can be repeated by fusing other pairs of ϕ’s. This proves that correla-
tion functions of an arbitrary number of ϕ’s and an arbitrary number of ϕ2’s are conformally 
covariant.

The next step is to discuss the derivatives of ϕ2, which appear among the . . . terms in (B.1). 
We claim that the coefficients of these terms are such that this part of the OPE respects conformal 
invariance. To prove this consider the three point function

〈ϕ2(y)ϕ(x1)ϕ(x2)〉 . (B.5)

By the proven conformal invariance property, it has the well-known functional form [37]

const.

|x1 − y|�2 |x2 − y|�2 |x1 − x2|2�−�2
. (B.6)

Expanding this in x2 − x1, we will get a series of the schematic form

const.

|x1 − y|2�2
|x1 − x2|2�−�2

∞∑
n=0

cn

(
x2 − x1

|x1 − y|
)n

. (B.7)

51 In this section all operators will be finite, renormalized, so we drop square brackets from the notation.
52 The value of the constant coefficient with which ϕ2 appears in this OPE is unimportant for this argument, so we set 
it to one.
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As is well known, matching this series to the one obtained from the OPE, we can fix all the 
coefficients of the ∂αϕ2 terms, consistently with conformal invariance. Moreover this proves that 
ϕ2 has zero two point functions with any other operator O appearing in the OPE ϕ × ϕ. Indeed, 
a nonzero two point function would give rise to a term scaling as 1/|x1 − y|�2+�O . Assuming 
as we will, that in a generic interacting theory such as the WF fixed point all nontrivial operator 
degeneracies are lifted, there is no room for such a term in (B.7) except if O is a derivative of ϕ2.

Let us then consider the next operator in the ϕ × ϕ OPE which is not among the already 
considered operators 1, ϕ2, and the derivatives of ϕ2. It will be the operator ϕ4. Its correlation 
functions can be defined from those of ϕ by the equation:

〈ϕ4(x1) . . .〉 = lim
x2→x1

|x12|2�−�4
(
〈ϕ(x1)ϕ(x2) . . .〉

− |x12|−2�〈. . .〉
− |x12|−2�+�2〈P(x2 − x1, ∂)ϕ2(x1) . . .〉

)
. (B.8)

Here P is the infinite series encapsulating the contributions of ϕ2 and of its descendants in the 
OPE.53 This part of the OPE has already been proven to be conformally invariant. It is then not 
difficult to convince oneself that all three terms in the RHS of (B.8) transform under conformal 
transformations as expected for a primary of dimension �4.

It should be clear that the above argument can be continued recursively to higher dimensions. 
At each step we will identify a new operator, show that it’s a primary, and then show that con-
tributions of all of its descendants in the OPE are consistent with conformal invariance. We then 
subtract away this part of the OPE, identify the next operator, and go on. In the above exam-
ples the considered primaries ϕ2 and ϕ4 were scalars, but modifications to tensor operators are 
straightforward.

The above argument thus determines conformal transformation properties of all operators in 
the ϕ × ϕ OPE. It is expected that all Z2 even primary operators which are scalars or symmetric 
traceless tensors of even spin appear in this OPE. Z2 odd operators can then be accessed via the 
OPE ϕ × ϕ2. Mixed Lorentz symmetry representations can be accessed by considering OPEs of 
operators with spin. This will be somewhat more complicated since there are several conformally 
covariant structures for the three point functions of operators with spin. This complication is only 
technical, and the above argument can be suitably extended. We will not discuss this in detail.

Appendix C. Relative normalization of the φ and φ3 OPE coefficients

In this appendix we investigate the consequence of the nonlocal equation of motion (3.21) for 
OPE coefficients and operator normalizations. We will be working in the IR theory. With a small 
redefinition of the constants involved we can write (3.21) as∫

ddy
1

|x − y|2(d−�φ)
φ(y) = Cφ3(x) , C = −g0

3! (2π)2dwd−σ wd+σ > 0 . (C.1)

Let us first investigate the consequences of the equation of motion for three point functions. 
Using (C.1), and Symanzik’s star integral formula [78], we can easily deduce that if

53 Only the first few terms of this series, corresponding to the descendants of dimension < �4, will contribute in this 
equation.



M.F. Paulos et al. / Nuclear Physics B 902 (2016) 246–291 287
〈φ(x)O1(y)O2(z)〉 = λ12φ

|x − y|�φ+�1−�2 |x − z|�φ−�1+�2 |y − z|−�φ+�1+�2
, (C.2)

then

〈φ3(x)O1(y)O2(z)〉 = λ12φ3

|x − y|�φ3+�1−�2 |x − z|�φ3 −�1+�2 |y − z|−�
φ3 +�1+�2

, (C.3)

with �φ3 ≡ d − �φ and with a relative three point function coefficient given by

λ12φ3

λ12φ

= M3

C
, M3 = πd/2 
( 1

2 (d − �φ + �12))
( 1
2 (d − �φ − �12))
(�φ − d/2)


(d − �φ)
( 1
2 (�φ + �12))
( 1

2 (�φ − �12))
.

(C.4)

Here we introduced �12 ≡ �1 −�2. Notice that this computation provides an alternative deriva-
tion of the scaling dimension �φ3 in the IR theory, which was derived from the two point function 
in the main text. Notice also that the Gaussian limit ε → 0 is smooth because in this limit λ is 
only nonzero if �φ = ±�12 − 2k, and the zero in M3 precisely cancels the overall 1/g0 ∼ 1/ε.

The above three point functions are rather meaningless without knowledge of the two point 
functions of the operators involved. The two point function of φ takes the form

〈φ(x)φ(0)〉 = 1 + ε2ρ

|x|2�φ
. (C.5)

The coefficient ρ is a nontrivial function of ε which is finite as ε → 0. The two point function of 
φ3 is then given by the analogue of (3.37), which in the current conventions takes the form

〈φ3(x)φ3(0)〉 =
∫

ddy

∫
ddz

ε2ρ/C2

|x − y|2(d−�φ)|z|2(d−�φ)|y − z|2�φ
. (C.6)

Notice that we subtracted the tree-level part from the two point function of φ, cf. the discus-
sion below equation (3.37). The resulting two point function is therefore proportional to ρ. The 
integral as written is actually singular, but we can view it as a formal expression that has a well-
defined and finite meaning in momentum space. It then evaluates to

〈φ3(x)φ3(0)〉 = ε2ρM2/C2

|x|2�
φ3

(C.7)

with

M2 = πd
(d/2 − �φ)
(�φ − d/2)


(d − �φ)
(�φ)
. (C.8)

We emphasize that the Gaussian limit is again smooth.
Substituting �φ = (d − ε)/4 in (C.8) we find that M2 < 0 in a finite interval around ε = 0, 

for all physical values of d . The coefficient ρ is then also expected to be negative, so that alto-
gether the coefficient of (C.7) comes out positive. Indeed we expect the LRI to be described by 
a unitary, or reflection positive in the Euclidean, conformal field theory.54 We see from (3.26)

54 The Gaussian theory is unitary as long as �φ is above the scalar unitarity bound d/2 −1, i.e. if σ < 2. This condition 
is satisfied throughout region 2, see Fig. 1. We expect that perturbing a unitary theory by a hermitian operator φ4 with a 
real coupling will give rise to a unitary theory.
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that ρ is negative to the first nontrivial order in perturbation theory, which is in agreement with 
expectations.

Meaningful three point functions involve the unit normalized operators

φ̃(x) ≡ 1√
1 + ε2ρ

φ(x) , φ̃3(x) ≡ 1√
ε2ρM2/C2

φ3(x) , (C.9)

in terms of which we find that

λ12φ̃3

λ12φ̃

= M3

√
1 + ε2ρ√

ε2ρM2
. (C.10)

We see that C drops out, but the relative three point functions still involve ρ which we can only 
compute perturbatively.

Notice however that we can take further ratios to get rid of the unknown ρ. Namely, if we 
consider two OPEs O1 ×O2 and O′

1 ×O′
2, then

λ12φ̃3/λ12φ̃

λ1′2′φ̃3/λ1′2′φ̃
= M3

M ′
3

. (C.11)

This equation may be used in a variety of ways in conformal bootstrap analyses involving multi-
ple correlators.

It is interesting to consider the limit σ → σ∗ where the LRI should transition to the SRI. The 
SRI does not have an operator corresponding to our φ̃3. However from (C.10) we see that there is 
no decoupling of the φ̃3 operator unless ε2ρ = −1, which would imply that φ becomes null and 
also decouples. Barring this decoupling, we predict a discontinuity in the transition from LRI to 
SRI.55
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