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AdS boundary conditions and the Topologically
Massive Gravity/CFT correspondence
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Abstract.
The AdS/CFT correspondence provides a new perspective on recurrent questions in General

Relativity such as the allowed boundary conditions at infinity and the definition of gravitational
conserved charges. Here we review the main insights obtained in this direction over the last decade
and apply the new techniques to Topologically Massive Gravity. We show that this theory is dual to
a non-unitary CFT for any value of its parameterµ and becomes a Logarithmic CFT atµ = 1.

Keywords: Holography
PACS: 11.25.Tq, 04.60.-m

INTRODUCTION

Three dimensional gravity offers an interesting arena to investigate both the quantization
of gravitational theories and holography. Since Einstein gravity in three dimensions
does not have propagating degrees of freedom it is not a good toy model for higher
dimensional gravitational theories. Adding higher derivative terms gives propagating
degrees of freedom but the theory generically then containsghost-like excitations. In
recent times there has been renewed interest in topologically massive gravity with a
negative cosmological constant in three dimensions: [1, 2]

S=
∫

d3x

(√−g(R−2Λ)+
1

2µ
(ΓdΓ+

2
3

Γ3)

)

(1)

This theory admits asymptotically AdS solutions and has been used as an arena to
explore holography. It has also been conjectured to be free of instability problems for
µ = 1. At µ 6= 1 the perturbative massive modes around the AdS background have
negative energy and the theory is unstable, but it was claimed in [3] that atµ = 1 there
are no negative energy modes and the theory is stable. The corresponding dual two
dimensional field theory was conjectured to contain only a right moving sector, and thus
to be a chiral conformal field theory.

This claim proved controversial as other authors found non-chiral modes and insta-
bilities atµ = 1 [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. The unstable modes have fall-off con-
ditions which are different from those that the metric satisfies in pure three-dimensional
Einstein gravity, the so-called Brown-Henneaux boundary conditions [14] for asymptot-
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ically AdS spacetimes. The main issue is then the question:What are the allowed fall-off
conditions for the fields at infinity?

The traditional point of view regarding fall-off conditions goes back (at least) to the
work of Regge and Teitelboim [15] and can be summarized as follows:

1. Select physically "reasonable" fall-off conditions such that relevant solutions, for
example black holes, satisfy them.

2. Check that conserved charges are finite with this choice.

One may then consider different fall-off conditions as defining different theories.
The AdS/CFT correspondence however provides anew perspective which leads to

a comprehensive answer to such questions. The focus of this article will be to explain
the new insights and methodology originating from AdS/CFT and their applications to
topologically massive gravity. More details can be found inthe article [16].

ADS/CFT: BASICS

An asymptoticallyAdSspacetime has a conformal boundary at which boundary condi-
tions for all bulk fields need to be defined. In the framework ofthe AdS/CFT correspon-
dence the bulk fieldsφ I

(0) parametrizing these boundary conditions at conformal infinity

are identified with sources that couple to operatorsOI of the dual CFT. The defining
relation of the AdS/CFT correspondence is that the on-shellaction,Sonshell[φ(0)], is the
generating functional of CFT correlation functions:

〈O〉 ∼
δSonshell[φ(0)]

δφ(0)
, 〈O(x)O(y)〉 ∼

δ 2Sonshell[φ(0)]
δφ(0)(x)δφ(0)(y)

, (2)

etc. These identifications lead to new intuition about the boundary conditions. In quan-
tum field theory the sources that couple to operators are unconstrained, because one
functionally differentiates with respect to them. This implies that one should be able
to formulate the bulk/boundary problem by specifying arbitrary functions/tensors as
boundary conditions for bulk fields.

Let us consider the case where the bulk field of interest is themetric. In the physics lit-
erature, prior to the AdS/CFT correspondence, there were a number of works discussing
Asymptotically AdS spacetimes, for example [17, 18, 19]. Inthese works the metric
approaches that of AdS at conformal infinity; the spacetimesare asymptotically AdS.

For AdS/CFT however such boundary conditions do not suffice:one needs more gen-
eral boundary conditions. In particular, the boundary conditions must be parametrized
by an unconstrained metric, since this metric should act as asource for the energy
momentum tensorTi j of the dual CFT. Fortunately this more general set-up has been
developed in the mathematics literature [20]. The corresponding spacetimes are called
Asymptotically locally AdS spacetimes (AlAdS).

An AlAdS spacetime always admits the following metric in a finite neighborhood of
the conformal boundary, located atr = 0:

ds2 =
dr2

r2 +
1
r2gi j (x, r)dxidxj (3)



where
lim
r→0

gi j (x, r) = g(0)i j (x) (4)

is an arbitrary non-degenerate metric. The coordinates used here are Gaussian normal
coordinates centered at the conformal boundary.

Let us emphasize that the only requirement put ongi j (x, r) a priori is that it should
have a non-degenerate limit asr → 0. The precise form ofgi j (x, r) is determined
by solving the bulk field equations asymptotically. This problem reduces to solving
algebraic equations, so themost general asymptotic solution can be readily found for
any given bulk theory that admits AlAdS solutions.

For Einstein gravity in(d+1) dimensions, the relevant expansion is [20, 21]:

gi j (x, r) = g(0)i j (x)+ r2g(2)i j + · · ·+ rd(g(d)i j +h(d)i j log(r2))+ · · · (5)

Here the coefficients(g(2)i j , · · · ,h(d)i j ) are locally determined in terms ofg(0). g(d)i j is
only partially determined by asymptotics: this coefficientis related via AdS/CFT to the
1-point function ofTi j and thus to bulk conserved charges. The trace and divergenceof
g(d)i j are determined and relate to dilatation and diffeomorphismWard identities. The
logarithmic coefficienth(d) is non-zero whend is even and is greater than two, and it is
related to the Weyl anomaly of the boundary theory [22]

h(d) ∼
δ

δg(0)

∫

(con f ormal anomaly). (6)

Note that in the specific case of pure Einstein gravity in three bulk dimensions

gi j (x, r) = g(0)i j (x)+ r2g(2)i j + · · · (7)

In this case,h(2) actually vanishes because the integral of the conformal anomaly is a
topological quantity (the Euler number).

The precise form of this expansion is specific to Einstein gravity. Coupling to matter
changes the coefficients. For example, coupling Einstein gravity to a free massless scalar
induces a logarithmic term in the expansion, i.e.h(2) 6= 0 in this theory [22]. There is also
an example of 3d gravity coupled to scalars with log2 terms in the asymptotic expansion,
see [23], appendix E. Even the power of the leading order correction can change, for
example it can ber rather thanr2 [24].

Note that the Brown-Henneaux boundary conditions are as in (7) with the additional
restriction g(0)i j (x) = δi j (in the Euclidean), i.e. the metric is asymptoticallyAdS3.
Moreover, these boundary conditions are often quoted as:

gi j (x, r) = δi j +O(r2), (8)

i.e. it is assumed that the fall-off of the subleading terms is polynomial rather than
logarithmic. It is important to emphasize that in the AdS/CFT correspondence such
boundary conditions are not sufficiently general. For example, the Brown-Henneaux
boundary conditions are violated whenever one wishes to consider the CFT in a non-
trivial background, or when one wishes to compute correlation functions of the stress
energy tensor. Logarithmic terms generically arise in the expansion of the subleading
terms and are related to matter and gravitational conformalanomalies.



Conserved charges

This is an another area where the AdS/CFT duality provides a new and systematic
approach [25]. In quantum field theory the energy is computedusing the energy mo-
mentum tensor,

E = 〈H〉=
∫

dd−1x〈T00〉 (9)

Generically this expression needs renormalization due to UV infinities.
In the AdS/CFT correspondence

〈Ti j 〉=
δSonshell[g(0)]

δgi j
(0)

(10)

This expression is also formally infinite, due to the infinitevolume of spacetime (IR
divergences) and needsholographic renormalization[26].

One can holographically renormalize the theory by adding local boundary covariant
counterterms [21, 27, 28] and thus obtain a finite 1-point function for Ti j for a general
AlAdS spacetime [22]

〈Ti j 〉 ∼ g(d)i j +Xi j [g(0)] (11)

with Xi j [g(0)] a known local function ofg(0). One can furthermore prove rigorously from
first principles (e.g. using Noether’s method or Wald’s covariant phase space methods)
that the holographic charges are the correct gravitationalconserved charges [29]. Note
that the proofs given in [29] apply equally well to cases where there are logarithmic
terms in the asymptotic expansions.

Summary

In summary, the holographic methodology that replaces previous approaches is:

1. Derive the most general solution of the bulk equations with general Dirichlet
boundary conditions for all fields.

2. General results guarantee that the conserved charges arewell-defined and can be
obtained from the holographic 1-point functions.

The holographic framework allows one to go further and obtain new information by
computing two and higher point functions.

APPLICATION TO TMG

Topologically massive gravity is obtained by adding to 3d Einstein gravity the gravita-
tional Chern-Simons term, see equation (1). The equations of motion are:

Rκλ +2gκλ +
1
µ

ε ρσ
κ ∇ρRσλ +κ ↔ λ = 0, (12)



and these admit asymptoticallyAdSsolutions, for example the BTZ black hole, as well
as perturbative massive modes when one expands aroundAdS. Whenµ 6= 1 however,
the massive modes have negative energy and the theory is known to be unstable.

In exploring holography for TMG Strominger et al [3] claimedthat the dual 2d CFT
is chiral atµ = 1 in the following sense:

1. There are no left moving modes in the bulk satisfying Brown-Henneaux boundary
conditions.

2. The left moving central chargecL of the CFT is zero atµ = 1.
3. There are no negative energy modes and the theory is therefore stable atµ = 1.

A holographic correspondence between TMG and a chiral CFT was proposed.
However, the non-chiral mode of topologically massive gravity found in [7] has the

asymptotic form

gi j (x, r) = δi j + r2(g(2)i j + log(r2)h(2)i j )+ · · · (13)

which differs from the Brown-Henneaux boundary conditionsbecause of theh(2) log-
arithmic term. A discussion followed as to whether such boundary conditions could be
consistent and subsequently it was proven by [30] that conserved charges are indeed fi-
nite with such boundary conditions. As mentioned above, thefact that the charges are
finite is unsurprising since the general proof given in [29],although strictly speaking not
applicable for TMG, encompasses cases with logarithmic fall-off behaviors.

From the perspective of AdS/CFT:

1. a subleading log is not surprising, as the subleading coefficientsroutinely change
and involve logsas one changes the bulk action;

2. the form of the asymptotic expansion should not be fixed by hand but should rather
be derived by solving the bulk equations asymptotically.

We will return to the most general asymptotic solution of TMGshortly.

HOLOGRAPHY FOR TMG AND LCFT

We now move to apply holographic methodology to the topologically massive gravity.
Let us first consider the theory atµ = 1. There is an important new element compared to
earlier holographic literature: the field equations are third order in derivatives, so there
are two independent boundary data: one can fix the metric and acertain component of the
extrinsic curvature. The boundary metricg(0)i j is the source for the energy momentum
tensorTi j . The boundary fieldb(0)i j parametrizing the boundary behavior of the extrinsic
curvature is a source for a new operatorti j .

We need one further ingredient. It turns out thatti j is obtained as a limit of an
irrelevant operator. In CFT, when one couples an irrelevantoperator, this generates
severe UV divergences and the theory is not conformal in the UV. In gravity, a source
for an irrelevant operator introduces severe IR divergences and the solution is not
asymptotically AdS [22]. In both cases, one bypasses the problems by treating the
source perturbatively and thus we will work to first order inb(0), which suffices for



the computation of correlation functions that involve at most two insertions ofti j . In
particular, we can compute all 2-point functions.

The most general asymptotically locally AdS solution (i.e.with non-degenerate con-
formal boundary) of the TMG equations of motion, with terms linear in the sourceb(0)
for the irrelevant operator also included, is then:

ds2 =
dr2

r2 +
1
r2gi j (x, r)dxidxj (14)

with
gi j (x, r) = b(0)i j logr2+g(0)i j + r2(g(2)i j +b(2)i j logr2)+ · · · (15)

Only b(0)z̄z̄ is non-zero and is the source for the new operatortzz. The subleading
coefficientsg(2) andb(2) are constrained partially by the asymptotic analysis, withthe
constraints as usual relating to Ward identities.

The (finite) holographic 1-point functions can be computed in complete generality:

〈Ti j 〉 =
1

4GN

(

g(2)i j +
1
2

R[g(0)]g(0)i j (16)

−1
2

(

ε k
i g(2)k j +(i ↔ j)

)

−2b(2)i j +
1
2

Ai j [g(0)i j ]
)

〈tzz〉 =
1

2GN
(g(2)zz+b(2)zz)

Ti j satisfies the expected anomalous CFT Ward identities:

〈T i
i 〉 =

1
4GN

(1
2

R[g(0)]+
1
2

Ai
i [g(0)]

)

(17)

∇ j〈Ti j 〉 =
1

4GN

(1
4

εi j ∇ jR[g(0)]+
1
2

∇ jAi j [g(0)]
)

The right hand side of the second equation contains the expected consistent (non-
covariant) diffeomorphism anomaly. The improved energy momentum tensor,̂Ti j =

Ti j − 1
8GN

Ai j has instead a covariant diffeomorphism anomaly [31]. From the trace Ward
identity one can extract the sum of left and right central changes,cL +cR.

The energy momentum tensorTi j can be used to obtain the conserved charges. For
example one can compute the conserved charges for the BTZ black hole:

ds2 =
dr2

r2 −
[

1
r2 −

1
2
(r2

++ r2
−)+

1
4
(r2

+− r2
−)

2r2
]

dt2 (18)

+

[

1
r2 +

1
2
(r2

++ r2
−)+

1
4
(r2

+− r2
−)

2r2
]

dφ2+2r+r−dtdφ .

The stress energy tensor becomes chiral atµ = 1,

Tz̄z̄=
2

GN
(r++ r−)2, Tzz= 0 (19)



and the conserved charges are

M = −
∫

dφTt
t =

π
4GN

(r++ r−)
2

J = −
∫

dφTt
φ = M (20)

Note thatJ = M even away from extremality, i.e. forr+ 6= |r−|.
Given the general expressions for the 1-point functions, wecan use the general

solution of the linearized equations of motion about AdS to extract the following non-
zero 2-point functions:

〈tzz(z, z̄)tzz(0)〉 =
(3/GN) log|z|2

z4 , (21)

〈tzz(z, z̄)Tzz(0)〉 =
(−3/GN)

2z4 ,

〈Tz̄z̄(z, z̄)Tz̄z̄(0)〉 =
(3/GN)

2z̄4 ,

These are precisely the non-zero 2-point functions of a Logarithmic CFT with central
charges:

cL = 0, cR =
3

GN
. (22)

In the left moving sector the operators(tzz,Tzz) form a logarithmic pair with non-
diagonalizable two point functions and "new anomaly" parameter

b=− 3
GN

(23)

such that

〈tzz(z, z̄)Tzz(0)〉=
b

2z4 , (24)

characterizing the LCFT.
We also analyzed the theory in the neighborhood ofµ = 1. Lettingµ = 2λ +1, near

λ = 0, the general solution to the linearized equations of motion is expanded near the
boundary as

hi j = h(−2λ )i j r
−2λ +h(0)i j +h(2)i j r

2+ . . . , (25)

whereh(0)i j is the usual source for the energy-momentum tensor andh(−2λ )i j is traceless
and chiral and acts as a source for an irrelevant operatorXi j .

The nonvanishing two-point functions are:

〈Tz̄z̄(z, z̄)Tz̄z̄(0)〉 =
3

2GN

λ +1
2λ +1

1
z̄4

〈Tzz(z, z̄)Tzz(0)〉 =
3

2GN

λ
2λ +1

1
z4

〈Xzz(z, z̄)Xzz(0)〉 = − 1
2GN

λ (λ +1)(2λ +3)
2λ +1

1

z2λ+4z̄2λ .



From these expressions we see that

(cL,cR) =
3

2GN

(

1− 1
µ
,1+

1
µ

)

(26)

whilst X has weights(hL,hR) = (2+λ ,λ ).
These correlation functions smoothly reduce to those atµ → 1; the operatortzz is

given by

tzz=− 1
λ
(Xzz−Tzz) (27)

and we recover the value ofb given previously. In fact, our discussion mirrors the
degeneration of a CFT to a logarithmic CFT asc→ 0 discussed by [32]. As here their
logarithmic partner of the stress energy tensor originatesfrom another primary whose
dimension approaches(2,0) in the c → 0 limit. There are other ways to take ac → 0
limit (avoiding "catastrophe", and demanding that the OPE remains well defined), but it
is this approach which is realized holographically.

From the form of the 2-point functions one finds that the CFT contains a state|X〉
of negative norm and〈X|H|X〉 < 0 in that state. This is the counterpart of the bulk
instability due to negative energy of massive gravitons.

CONCLUSIONS

Topologically massive gravity atµ = 1 is dual to a logarithmic CFT and therefore it is
not unitary. Away from the "chiral point" the theory contains states of negative norm.
One may try to restrict to the right-moving sector of the theory, which could yield a
consistent chiral subsector. Arguments for such a truncation at the classical level were
given in [33]. From the current perspective a necessary requirement for such a truncation
would be that the logarithmic operatort is not generated in the OPE of the right-moving
operators; in particular, the three point function〈tT̄T̄〉 must vanish. This indeed holds
for certain LCFTs, in particular for those discussed in [32], and it would be interesting
to compute this 3-point function holographically for TMG atµ = 1.

We should emphasize however that the existence of such a truncation only shows that
a set of operators of the LCFT (in this case the right moving stress energy tensor) form
a closed subsector, not that this subsector has a dual of its own. To give an example in a
more familiar setting let us considerN = 4 SYM in four dimensions and the dual string
theory onAdS5×S5. There are a number of consistent truncations of the bulk theory.
For example, it is generally believed (and it has been provenfor certain subsectors)
that the maximally supersymmetricSO(6) gauged supergravity in five dimensions is a
consistent truncation of type IIB supergravity onS5. The existence of this consistent
truncation however does not imply that there is a new duality: the dual theory is always
N = 4 SYM and the consistent truncation only implies that certain operators (those in
the stress energy supermultiplet in this example) are closed under OPE’s in the large N
limit.

Finally, the following argument suggests that difficultiesare generic in formulating a
duality between a unitary CFT and a bulk theory that only involves three dimensional



gravity, such as TMG, instead of a string theory that at low energies reduces to the
gravitational theory. In the AdS/CFT correspondence we expect to have a bulk field for
every boundary gauge invariant operator. The existence of black holes in these theories
implies that the dual theory has a very large number of operators to account for the
entropy of the black hole. For each of those operators the bulk theory should have a
corresponding bulk field. Pure gravity however only contains the metric so it can only
describe the stress energy tensor holographically. If we allow for higher derivative terms,
as in the case of TMG, which are treated exactly (rather than perturbatively, as they
would be in a string theory set up) one can incorporate a few more gauge invariant
operators but then the theory generically becomes non-unitary. In all cases the bulk
description is missing the fields that would provide the sources for the operators dual
to the black hole microstates. Instead, in a string theory set up these operators would be
dual to corresponding string states.
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