595 research outputs found
Profile Characteristics of Cut Tooth Surfaces Developed by Rotating Instruments
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68018/2/10.1177_00220345570360062301.pd
Cystic Fibrosis Foundation and European Cystic Fibrosis Society Survey of cystic fibrosis mental health care delivery
Background: Psychological morbidity in individuals with cystic fibrosis (CF) and their caregivers is common. The Cystic Fibrosis Foundation (CFF) and European Cystic Fibrosis Society (ECFS) Guidelines Committee on Mental Health sought the views of CF health care professionals concerning mental health care delivery.
Methods: An online survey which focused on the current provision and barriers to mental health care was distributed to CF health care professionals.
Results: Of the 1454 respondents, many did not have a colleague trained in mental health issues and 20% had no one on their team whose primary role was focused on assessing or treating these issues. Insufficient resources and a lack of competency were reported in relation to mental health referrals. Seventy-three percent of respondents had no experience with mental health screening. Of those who did, they utilized 48 different, validated scales.
Conclusions: These data have informed the decision-making, dissemination and implementation strategies of the Mental Health Guidelines Committee sponsored by the CFF and ECFS
Looking for magnetic monopoles at LHC with diphoton events
Magnetic monopoles have been a subject of interest since Dirac established
the relation between the existence of monopoles and charge quantization. The
intense experimental search carried thus far has not met with success. The
Large Hadron Collider is reaching energies never achieved before allowing the
search for exotic particles in the TeV mass range. In a continuing effort to
discover these rare particles we propose here other ways to detect them. We
study the observability of monopoles and monopolium, a monopole-antimonopole
bound state, at the Large Hadron Collider in the channel for
monopole masses in the range 500-1000 GeV. We conclude that LHC is an ideal
machine to discover monopoles with masses below 1 TeV at present running
energies and with 5 fb of integrated luminosity.Comment: This manuscript contains information appeared in Looking for magnetic
monopoles at LHC, arXiv:1104.0218 [hep-ph] and Monopolium detection at the
LHC.,arXiv:1107.3684 [hep-ph] by the same authors, rewritten for joint
publication in The European Physica Journal Plus. 26 pages, 22 figure
Lattice gauge theory with baryons at strong coupling
We study the effective Hamiltonian for strong-coupling lattice QCD in the
case of non-zero baryon density. In leading order the effective Hamiltonian is
a generalized antiferromagnet. For naive fermions, the symmetry is U(4N_f) and
the spins belong to a representation that depends on the local baryon number.
Next-nearest-neighbor (nnn) terms in the Hamiltonian break the symmetry to
U(N_f) x U(N_f). We transform the quantum problem to a Euclidean sigma model
which we analyze in a 1/N_c expansion. In the vacuum sector we recover
spontaneous breaking of chiral symmetry for the nearest-neighbor and nnn
theories. For non-zero baryon density we study the nearest-neighbor theory
only, and show that the pattern of spontaneous symmetry breaking depends on the
baryon density.Comment: 31 pages, 5 EPS figures. Corrected Eq. (6.1
Equation of motion for relativistic compact binaries with the strong field point particle limit: Third post-Newtonian order
An equation of motion for relativistic compact binaries is derived through
the third post-Newtonian (3 PN) approximation of general relativity. The strong
field point particle limit and multipole expansion of the stars are used to
solve iteratively the harmonically relaxed Einstein equations. We take into
account the Lorentz contraction on the multipole moments defined in our
previous works. We then derive a 3 PN acceleration of the binary orbital motion
of the two spherical compact stars based on a surface integral approach which
is a direct consequence of local energy momentum conservation. Our resulting
equation of motion admits a conserved energy (neglecting the 2.5 PN radiation
reaction effect), is Lorentz invariant and is unambiguous: there exist no
undetermined parameter reported in the previous works. We shall show that our 3
PN equation of motion agrees physically with the Blanchet and Faye 3 PN
equation of motion if , where is the parameter
which is undetermined within their framework. This value of is
consistent with the result of Damour, Jaranowski, and Sch\"afer who first
completed a 3 PN iteration of the ADM Hamiltonian in the ADMTT gauge using the
dimensional regularization.Comment: 52 pages, no figure, Appendices B and D added. Phys. Rev. D in pres
Hadronic EDMs, the Weinberg Operator, and Light Gluinos
We re-examine questions concerning the contribution of the three-gluon
Weinberg operator to the electric dipole moment of the neutron, and provide
several QCD sum rule-based arguments that the result is smaller than - but
nevertheless consistent with - estimates which invoke naive dimensional
analysis. We also point out a regime of the MSSM parameter space with light
gluinos for which this operator provides the dominant contribution to the
neutron electric dipole moment due to enhancement via the dimension five color
electric dipole moment of the gluino.Comment: 6 pages, RevTeX, 3 figures; v2: references added; v3: typos
corrected, to appear in Phys. Rev.
Gamma rays from colliding winds of massive stars
Colliding winds of massive binaries have long been considered as potential sites of non-thermal high-energy photon production. This is motivated by the detection of non-thermal spectra in the radio band, as well as by correlation studies of yet unidentified EGRET gamma-ray sources with source populations appearing in star formation regions. This work re-considers the basic radiative processes and its properties that lead to high energy photon production in long-period massive star systems. We show that Klein-Nishina effects as well as the anisotropic nature of the inverse Compton scattering, the dominating leptonic emission process, likely yield spectral and variability signatures in the gamma-ray domain at or above the sensitivity of current or upcoming gamma ray instruments like GLAST-LAT. In addition to all relevant radiative losses, we include propagation (such as convection in the stellar wind) as well as photon absorption effects, which a priori can not be neglected. The calculations are applied to WR140 and WR147, and predictions for their detectability in the gamma-ray regime are provided. Physically similar specimen of their kind like WR146, WR137, WR138, WR112 and WR125 may be regarded as candidate sources at GeV energies for near-future gamma-ray experiments. Finally, we discuss several aspects relevant for eventually identifying this source class as a gamma-ray emitting population. Thereby we utilize our findings on the expected radiative behavior of typical colliding wind binaries in the gamma-ray regime as well as its expected spatial distribution on the gamma-ray sky
Analysis of LIGO data for gravitational waves from binary neutron stars
We report on a search for gravitational waves from coalescing compact binary
systems in the Milky Way and the Magellanic Clouds. The analysis uses data
taken by two of the three LIGO interferometers during the first LIGO science
run and illustrates a method of setting upper limits on inspiral event rates
using interferometer data. The analysis pipeline is described with particular
attention to data selection and coincidence between the two interferometers. We
establish an observational upper limit of 1.7 \times 10^{2}M_\odot$.Comment: 17 pages, 9 figure
- …