80 research outputs found

    Progression to traditional cigarette smoking after electronic cigarette use among us adolescents and young adults

    Get PDF
    IMPORTANCE Electronic cigarettes (e-cigarettes)may help smokers reduce the use of traditional combustible cigarettes. However, adolescents and young adults who have never smoked traditional cigarettes are now using e-cigarettes, and these individuals may be at risk for subsequent progression to traditional cigarette smoking. OBJECTIVE To determine whether baseline use of e-cigarettes among nonsmoking and nonsusceptible adolescents and young adults is associated with subsequent progression along an established trajectory to traditional cigarette smoking. DESIGN, SETTING, AND PARTICIPANTS In this longitudinal cohort study, a national US sample of 694 participants aged 16 to 26 years who were never cigarette smokers and were attitudinally nonsusceptible to smoking cigarettes completed baseline surveys from October 1, 2012, to May 1, 2014, regarding smoking in 2012-2013. They were reassessed 1 year later. Analysis was conducted from July 1, 2014, to March 1, 2015. Multinomial logistic regression was used to assess the independent association between baseline e-cigarette use and cigarette smoking, controlling for sex, age, race/ethnicity, maternal educational level, sensation-seeking tendency, parental cigarette smoking, and cigarette smoking among friends. Sensitivity analyses were performed, with varying approaches to missing data and recanting. EXPOSURES Use of e-cigarettes at baseline. MAIN OUTCOMES AND MEASURES Progression to cigarette smoking, defined using 3 specific states along a trajectory: nonsusceptible nonsmokers, susceptible nonsmokers, and smokers. Individuals who could not rule out smoking in the future were defined as susceptible. RESULTS Among the 694 respondents, 374 (53.9%) were female and 531 (76.5%) were non-Hispanic white. At baseline, 16 participants (2.3%) used e-cigarettes. Over the 1-year follow-up, 11 of 16 e-cigarette users and 128 of 678 of those who had not used e-cigarettes (18.9%) progressed toward cigarette smoking. In the primary fully adjusted models, baseline e-cigarette use was independently associated with progression to smoking (adjusted odds ratio [AOR], 8.3; 95%CI, 1.2-58.6) and to susceptibility among nonsmokers (AOR, 8.5; 95% CI, 1.3-57.2). Sensitivity analyses showed consistent results in the level of significance and slightly larger magnitude of AORs. CONCLUSIONS AND RELEVANCE In this national sample of US adolescents and young adults, use of e-cigarettes at baseline was associated with progression to traditional cigarette smoking. These findings support regulations to limit sales and decrease the appeal of e-cigarettes to adolescents and young adults

    EACVI recommendations on cardiovascular imaging for the detection of embolic sources: endorsed by the Canadian Society of Echocardiography

    Get PDF
    Cardioaortic embolism to the brain accounts for approximately 15-30% of ischaemic strokes and is often referred to as 'cardioembolic stroke'. One-quarter of patients have more than one cardiac source of embolism and 15% have significant cerebrovascular atherosclerosis. After a careful work-up, up to 30% of ischaemic strokes remain 'cryptogenic', recently redefined as 'embolic strokes of undetermined source'. The diagnosis of cardioembolic stroke remains difficult because a potential cardiac source of embolism does not establish the stroke mechanism. The role of cardiac imaging-transthoracic echocardiography (TTE), transoesophageal echocardiography (TOE), cardiac computed tomography (CT), and magnetic resonance imaging (MRI)-in the diagnosis of potential cardiac sources of embolism, and for therapeutic guidance, is reviewed in these recommendations. Contrast TTE/TOE is highly accurate for detecting left atrial appendage thrombosis in patients with atrial fibrillation, valvular and prosthesis vegetations and thrombosis, aortic arch atheroma, patent foramen ovale, atrial septal defect, and intracardiac tumours. Both CT and MRI are highly accurate for detecting cavity thrombosis, intracardiac tumours, and valvular prosthesis thrombosis. Thus, CT and cardiac magnetic resonance should be considered in addition to TTE and TOE in the detection of a cardiac source of embolism. We propose a diagnostic algorithm where vascular imaging and contrast TTE/TOE are considered the first-line tool in the search for a cardiac source of embolism. CT and MRI are considered as alternative and complementary tools, and their indications are described on a case-by-case approach.Cardiolog

    Numerical evaluation of spray position for improved nasal drug delivery

    Get PDF
    Topical intra-nasal sprays are amongst the most commonly prescribed therapeutic options for sinonasal diseases in humans. However, inconsistency and ambiguity in instructions show a lack of definitive knowledge on best spray use techniques. In this study, we have identified a new usage strategy for nasal sprays available over-the-counter, that registers an average 8-fold improvement in topical delivery of drugs at diseased sites, when compared to prevalent spray techniques. The protocol involves re-orienting the spray axis to harness inertial motion of particulates and has been developed using computational fluid dynamics simulations of respiratory airflow and droplet transport in medical imaging-based digital models. Simulated dose in representative models is validated through in vitro spray measurements in 3D-printed anatomic replicas using the gamma scintigraphy technique. This work breaks new ground in proposing an alternative user-friendly strategy that can significantly enhance topical delivery inside human nose. While these findings can eventually translate into personalized spray usage instructions and hence merit a change in nasal standard-of-care, this study also demonstrates how relatively simple engineering analysis tools can revolutionize everyday healthcare. Finally, with respiratory mucosa as the initial coronavirus infection site, our findings are relevant to intra-nasal vaccines that are in-development, to mitigate the COVID-19 pandemic

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore