236 research outputs found

    Distinct forms of synaptic inhibition and neuromodulation regulate calretinin positive neuron excitability in the spinal cord dorsal horn

    Get PDF
    The dorsal horn (DH) of the spinal cord contains a heterogenous population of neurons that process incoming sensory signals before information ascends to the brain. We have recently characterized calretinin-expressing (CR+) neurons in the DH and shown that they can be divided into excitatory and inhibitory subpopulations. The excitatory population receives high-frequency excitatory synaptic input and expresses delayed firing action potential discharge, whereas the inhibitory population receives weak excitatory drive and exhibits tonic or initial bursting discharge. Here, we characterize inhibitory synaptic input and neuromodulation in the two CR+ populations, in order to determine how each is regulated. We show that excitatory CR+ neurons receive mixed inhibition from GABAergic and glycinergic sources, whereas inhibitory CR+ neurons receive inhibition, which is dominated by glycine. Noradrenaline and serotonin produced robust outward currents in excitatory CR+ neurons, predicting an inhibitory action on these neurons, but neither neuromodulator produced a response in CR+ inhibitory neurons. In contrast, enkephalin (along with selective mu and delta opioid receptor agonists) produced outward currents in inhibitory CR+ neurons, consistent with an inhibitory action but did not affect the excitatory CR+ population. Our findings show that the pharmacology of inhibitory inputs and neuromodulator actions on CR+ cells, along with their excitatory inputs can define these two subpopulations further, and this could be exploited to modulate discrete aspects of sensory processing selectively in the DH

    Functional and molecular analysis of proprioceptive sensory neuron excitability in mice

    Get PDF
    Neurons located in dorsal root ganglia (DRG) are crucial for transmitting peripheral sensations such as proprioception, touch, temperature, and nociception to the spinal cord before propagating these signals to higher brain structures. To date, difficulty in identifying modality-specific DRG neurons has limited our ability to study specific populations in detail. As the calcium-binding protein parvalbumin (PV) is a neurochemical marker for proprioceptive DRG cells we used a transgenic mouse line expressing green fluorescent protein (GFP) in PV positive DRGs, to study the functional and molecular properties of putative proprioceptive neurons. Immunolabeled DRGs showed a 100% overlap between GFP positive (GFP+) and PV positive cells, confirming the PVeGFP mouse accurately labeled PV neurons. Targeted patch-clamp recording from isolated GFP+ and GFP negative (GFP−) neurons showed the passive membrane properties of the two groups were similar, however, their active properties differed markedly. All GFP+ neurons fired a single spike in response to sustained current injection and their action potentials (APs) had faster rise times, lower thresholds and shorter half widths. A hyperpolarization-activated current (Ih) was observed in all GFP+ neurons but was infrequently noted in the GFP− population (100% vs. 11%). For GFP+ neurons, Ih activation rates varied markedly, suggesting differences in the underlying hyperpolarization-activated cyclic nucleotide-gated channel (HCN) subunit expression responsible for the current kinetics. Furthermore, quantitative polymerase chain reaction (qPCR) showed the HCN subunits 2, 1, and 4 mRNA (in that order) was more abundant in GFP+ neurons, while HCN 3 was more highly expressed in GFP− neurons. Likewise, immunolabeling confirmed HCN 1, 2, and 4 protein expression in GFP+ neurons. In summary, certain functional properties of GFP+ and GFP− cells differ markedly, providing evidence for modality-specific signaling between the two groups. However, the GFP+ DRG population demonstrates considerable internal heterogeneity when hyperpolarization-activated cyclic nucleotide-gated channel (HCN channel) properties and subunit expression are considered. We propose this heterogeneity reflects the existence of different peripheral receptors such as tendon organs, muscle spindles or mechanoreceptors in the putative proprioceptive neuron population

    Gold nanoparticles decorated with ovalbumin-derived epitopes: effect of shape and size on T-cell immune responses

    Get PDF
    Gold nanoparticles (GNPs) can be manufactured in various shapes, and their size is programmable, which permits the study of the effects imposed by these parameters on biological processes. However, there is currently no clear evidence that a certain shape or size is beneficial. To address this issue, we have utilised GNPs and gold nanorods (GNRs) functionalised with model epitopes derived from chicken ovalbumin (OVA(257-264) and OVA(323-339)). By using two distinct epitopes, it was possible to draw conclusions regarding the impact of nanoparticle shape and size on different aspects of the immune response. Our findings indicate that the peptide amphiphile-coated GNPs and GNRs are a safe and versatile epitope-presenting system. Smaller GNPs (similar to 15 nm in diameter) induce significantly less intense T-cell responses. Furthermore, effective antigen presentation via MHC-I was observed for larger spherical particles (similar to 40 nm in diameter), and to a lesser extent for rod-like particles (40 by 15 nm). At the same time, antigen presentation via MHC-II strongly correlated with the cellular uptake, with smaller GNPs being the least efficient. We believe these findings will have implications for vaccine development, and lead to a better understanding of cellular uptake and antigen egress from lysosomes into the cytosol.Microbial BiotechnologyBiopharmaceuticsEnvironmental BiologySupramolecular & Biomaterials Chemistr

    Cystic Fibrosis Foundation and European Cystic Fibrosis Society Survey of cystic fibrosis mental health care delivery

    Get PDF
    Background: Psychological morbidity in individuals with cystic fibrosis (CF) and their caregivers is common. The Cystic Fibrosis Foundation (CFF) and European Cystic Fibrosis Society (ECFS) Guidelines Committee on Mental Health sought the views of CF health care professionals concerning mental health care delivery. Methods: An online survey which focused on the current provision and barriers to mental health care was distributed to CF health care professionals. Results: Of the 1454 respondents, many did not have a colleague trained in mental health issues and 20% had no one on their team whose primary role was focused on assessing or treating these issues. Insufficient resources and a lack of competency were reported in relation to mental health referrals. Seventy-three percent of respondents had no experience with mental health screening. Of those who did, they utilized 48 different, validated scales. Conclusions: These data have informed the decision-making, dissemination and implementation strategies of the Mental Health Guidelines Committee sponsored by the CFF and ECFS

    Complement Receptor Targeted Liposomes Encapsulating the Liver X Receptor Agonist GW3965 Accumulate in and Stabilize Atherosclerotic Plaques

    Get PDF
    Atherosclerosis is characterized by the retention of lipids in foam cells in the arterial intima. The liver X receptor (LXR) agonist GW3965 is a promising therapeutic compound, since it induces reverse cholesterol transport in foam cells. However, hepatic LXR activation increases plasma and liver lipid levels, inhibiting its clinical development. Herein, a formulation that specifically enhances GW3965 deposition in the atherosclerotic lesion is aimed to be developed. GW3965 is encapsulated in liposomes functionalized with the cyclic peptide Lyp-1 (CGNKRTRGC), which binds the p32 receptor expressed on foam cells. These liposomes show preferential uptake by foam cells in vitro and higher accumulation in atherosclerotic plaques in mice compared to non-targeted liposomes as determined by in vivo imaging. Flow cytometry analysis of plaques reveals increased retention of Lyp-1 liposomes in atherosclerotic plaque macrophages compared to controls (p Supramolecular & Biomaterials ChemistryMacromolecular Biochemistr

    Scaling of the B and D meson spectrum in lattice QCD

    Get PDF
    We give results for the BB and the DD meson spectrum using NRQCD on the lattice in the quenched approximation. The masses of radially and orbitally excited states are calculated as well as SS-wave hyperfine and PP-wave fine structure. Radially excited PP-states are observed for the first time. Radial and orbital excitation energies match well to experiment, as does the strange-non-strange SS-wave splitting. We compare the light and heavy quark mass dependence of various splittings to experiment. Our BB-results cover a range in lattice spacings of more than a factor of two. Our DD-results are from a single lattice spacing and we compare them to numbers in the literature from finer lattices using other methods. We see no significant dependence of physical results on the lattice spacing. PACS: 11.15.Ha 12.38.Gc 14.40.Lb 14.40.NdComment: 78 pages, 29 tables, 30 figures Revised version. Minor corrections to spelling and wordin

    Application of heavy-quark effective theory to lattice QCD: III. Radiative corrections to heavy-heavy currents

    Full text link
    We apply heavy-quark effective theory (HQET) to separate long- and short-distance effects of heavy quarks in lattice gauge theory. In this paper we focus on flavor-changing currents that mediate transitions from one heavy flavor to another. We stress differences in the formalism for heavy-light currents, which are discussed in a companion paper, showing how HQET provides a systematic matching procedure. We obtain one-loop results for the matching factors of lattice currents, needed for heavy-quark phenomenology, such as the calculation of zero-recoil form factors for the semileptonic decays BD()lνB\to D^{(*)}l\nu. Results for the Brodsky-Lepage-Mackenzie scale qq^* are also given.Comment: 35 pages, 17 figures. Program LatHQ2QCD to compute matching one-loop coefficients available at http://theory.fnal.gov/people/kronfeld/LatHQ2QCD

    Dilepton mass spectra in p+p collisions at sqrt(s)= 200 GeV and the contribution from open charm

    Get PDF
    The PHENIX experiement has measured the electron-positron pair mass spectrum from 0 to 8 GeV/c^2 in p+p collisions at sqrt(s)=200 GeV. The contributions from light meson decays to e^+e^- pairs have been determined based on measurements of hadron production cross sections by PHENIX. They account for nearly all e^+e^- pairs in the mass region below 1 GeV/c^2. The e^+e^- pair yield remaining after subtracting these contributions is dominated by semileptonic decays of charmed hadrons correlated through flavor conservation. Using the spectral shape predicted by PYTHIA, we estimate the charm production cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) \mu b, which is consistent with QCD calculations and measurements of single leptons by PHENIX.Comment: 375 authors from 57 institutions, 18 pages, 4 figures, 2 tables. Submitted to Physics Letters B. v2 fixes technical errors in matching authors to institutions. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Inclusive cross section and double helicity asymmetry for \pi^0 production in p+p collisions at sqrt(s)=200 GeV: Implications for the polarized gluon distribution in the proton

    Full text link
    The PHENIX experiment presents results from the RHIC 2005 run with polarized proton collisions at sqrt(s)=200 GeV, for inclusive \pi^0 production at mid-rapidity. Unpolarized cross section results are given for transverse momenta p_T=0.5 to 20 GeV/c, extending the range of published data to both lower and higher p_T. The cross section is described well for p_T < 1 GeV/c by an exponential in p_T, and, for p_T > 2 GeV/c, by perturbative QCD. Double helicity asymmetries A_LL are presented based on a factor of five improvement in uncertainties as compared to previously published results, due to both an improved beam polarization of 50%, and to higher integrated luminosity. These measurements are sensitive to the gluon polarization in the proton, and exclude maximal values for the gluon polarization.Comment: 375 authors, 7 pages, 3 figures. Submitted to Phys. Rev. D, Rapid Communications. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    System Size and Energy Dependence of Jet-Induced Hadron Pair Correlation Shapes in Cu+Cu and Au+Au Collisions at sqrt(s_NN) = 200 and 62.4 GeV

    Get PDF
    We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and semi-central collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.Comment: 464 authors from 60 institutions, 6 pages, 3 figures, 2 tables. Submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore