10,581 research outputs found

    SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    Get PDF
    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/\mu m. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles' stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.Comment: 5 figures, accepted in Nucl. Instrum. Methods

    Conceptualizing throughput legitimacy: procedural mechanisms of accountability, transparency, inclusiveness and openness in EU governance

    Get PDF
    This symposium demonstrates the potential for throughput legitimacy as a concept for shedding empirical light on the strengths and weaknesses of multi-level governance, as well as challenging the concept theoretically. This article introduces the symposium by conceptualizing throughput legitimacy as an ‘umbrella concept’, encompassing a constellation of normative criteria not necessarily empirically interrelated. It argues that in order to interrogate multi-level governance processes in all their complexity, it makes sense for us to develop normative standards that are not naïve about the empirical realities of how power is exercised within multilevel governance, or how it may interact with legitimacy. We argue that while throughput legitimacy has its normative limits, it can be substantively useful for these purposes. While being no replacement for input and output legitimacy, throughput legitimacy offers distinctive normative criteria— accountability, transparency, inclusiveness and openness— and points towards substantive institutional reforms.Published versio

    Data taking strategy for the phase study in ψ′→K+K−\psi^{\prime} \to K^+K^-

    Full text link
    The study of the relative phase between strong and electromagnetic amplitudes is of great importance for understanding the dynamics of charmonium decays. The information of the phase can be obtained model-independently by fitting the scan data of some special decay channels, one of which is ψ′→K+K−\psi^{\prime} \to K^{+}K^{-}. To find out the optimal data taking strategy for a scan experiment in the measurement of the phase in ψ′→K+K−\psi^{\prime} \to K^{+} K^{-}, the minimization process is analyzed from a theoretical point of view. The result indicates that for one parameter fit, only one data taking point in the vicinity of a resonance peak is sufficient to acquire the optimal precision. Numerical results are obtained by fitting simulated scan data. Besides the results related to the relative phase between strong and electromagnetic amplitudes, the method is extended to analyze the fits of other resonant parameters, such as the mass and the total decay width of ψ′\psi^{\prime}.Comment: 13 pages, 7 figure

    Thermophysical property measurement at Themicro-to Nano-scale of conductive wires—A comparison of the electrothermal technique and 3 omega method

    Get PDF
    Paper presented to the 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Florida, 14-16 July 2014.Accurate measurement of thermophysical properties (thermal conductivity and diffusivity and specific heat capacity) of micro- to nano-scale thin wires or films is a very difficult process; consequently, there are very few methods available to do so. Besides the optical setups in which thermal diffusivity is possible to be measured, the determination of thermal properties of fine fibres is limited to two major methods: the 3-omega method or the Transient/Generalized Electrothermal Technique. A comparative analysis of the two techniques using conductive platinum wires has taken place to determine the benefits and drawbacks of both. Variables such as accuracy, measurement theory, time to measure, and difficulty of measurement are all taken into account. The results for both methods were compared to theoretical and literature values. Trends and values indicate that both methods can yield reliable results with respect to diffusivity and conductivity and for specific heat capacity with 3-omega. The measurement process and results indicate that the ideal method is application specific.dc201

    Structural phase transitions in epitaxial perovskite films

    Full text link
    Three different film systems have been systematically investigated to understand the effects of strain and substrate constraint on the phase transitions of perovskite films. In SrTiO3_3 films, the phase transition temperature TC_C was determined by monitoring the superlattice peaks associated with rotations of TiO6_6 octahedra. It is found that TC_C depends on both SrTiO3_3 film thickness and SrRuO3_3 buffer layer thickness. However, lattice parameter measurements showed no sign of the phase transitions, indicating that the tetragonality of the SrTiO3_3 unit cells was no longer a good order parameter. This signals a change in the nature of this phase transition, the internal degree of freedom is decoupled from the external degree of freedom. The phase transitions occur even without lattice relaxation through domain formation. In NdNiO3_3 thin films, it is found that the in-plane lattice parameters were clamped by the substrate, while out-of-plane lattice constant varied to accommodate the volume change across the phase transition. This shows that substrate constraint is an important parameter for epitaxial film systems, and is responsible for the suppression of external structural change in SrTiO3_3 and NdNiO3_3 films. However, in SrRuO3_3 films we observed domain formation at elevated temperature through x-ray reciprocal space mapping. This indicated that internal strain energy within films also played an important role, and may dominate in some film systems. The final strain states within epitaxial films were the result of competition between multiple mechanisms and may not be described by a single parameter.Comment: REVTeX4, 14 figure

    Schroedinger cat-like states by conditional measurements on a beam-splitter

    Full text link
    A scheme for generating Schr\"{o}dinger cat-like states of a single-mode optical field by means of conditional measurement is proposed. Feeding into a beam splitter a squeezed vacuum and counting the photons in one of the output channels, the conditional states in the other output channel exhibit a number of properties that are very similar to those of superpositions of two coherent states with opposite phases. We present analytical and numerical results for the photon-number and quadrature-component distributions of the conditional states and their Wigner and Husimi functions. Further, we discuss the effect of realistic photocounting on the states.Comment: 6 figures(divided in subfigures) using a4.st

    Quantum recoil effects in finite-time disentanglement of two distinguishable atoms

    Full text link
    Starting from the requirement of distinguishability of two atoms by their positions, it is shown that photon recoil has a strong influence on finite-time disentanglement and in some cases prevents its appearance. At near-field inter atomic distances well localized atoms, with maximally one atom being initially excited, may suffer disentanglement at a single finite time or even at a series of equidistant finite times, depending on their mean inter atomic distance and their initial electronic preparation.Comment: 13 pages, 1 figure, submitted to Physical Review on august 2

    Quantum channel of continuous variable teleportation and nonclassicality of quantum states

    Full text link
    Noisy teleportation of nonclassical quantum states via a two-mode squeezed-vacuum state is studied with the completely positive map and the Glauber-Sudarshan PP-function. Using the nonclassical depth as a measure of transmission performance, we compare the teleportation scheme with the direct transmission through a noisy channel. The noise model is based on the coupling to the vacuum field. It is shown that the teleportation channel has better transmission performance than the direct transmission channel in a certain region. The bounds for such region and for obtaining the nonvanished nonclassicality of the teleported quantum states are also discussed. Our model shows a reasonable agreement with the observed teleportation fidelity in the experiment by Furusawa et al. [Science {\bf 282}, 706 (1998)]. We finally mention the required conditions for transmitting nonclassical features in real experiments.Comment: 16 pages, 4 figure

    Fidelity and the communication of quantum information

    Get PDF
    We compare and contrast the error probability and fidelity as measures of the quality of the receiver's measurement strategy for a quantum communications system. The error probability is a measure of the ability to retrieve classical information and the fidelity measures the retrieval of quantum information. We present the optimal measurement strategies for maximizing the fidelity given a source that encodes information on the symmetric qubit-states
    • …
    corecore