17 research outputs found

    Improvements to the single screw extruder

    Get PDF
    The extrusion on a single screw extruder is examined. The process is divided into several steps: the dosage of the materials to be conveyed; the modification of the shape of the feeding opening which influences the feeding process and consequently the throughput of the extruder; optimizing the shape of the feeding zone to meet the specific material requirements; and plasticizing and homogenizing

    Fluorescence characterization of clinically-important bacteria

    Get PDF
    Healthcare-associated infections (HCAI/HAI) represent a substantial threat to patient health during hospitalization and incur billions of dollars additional cost for subsequent treatment. One promising method for the detection of bacterial contamination in a clinical setting before an HAI outbreak occurs is to exploit native fluorescence of cellular molecules for a hand-held, rapid-sweep surveillance instrument. Previous studies have shown fluorescence-based detection to be sensitive and effective for food-borne and environmental microorganisms, and even to be able to distinguish between cell types, but this powerful technique has not yet been deployed on the macroscale for the primary surveillance of contamination in healthcare facilities to prevent HAI. Here we report experimental data for the specification and design of such a fluorescence-based detection instrument. We have characterized the complete fluorescence response of eleven clinically-relevant bacteria by generating excitation-emission matrices (EEMs) over broad wavelength ranges. Furthermore, a number of surfaces and items of equipment commonly present on a ward, and potentially responsible for pathogen transfer, have been analyzed for potential issues of background fluorescence masking the signal from contaminant bacteria. These include bedside handrails, nurse call button, blood pressure cuff and ward computer keyboard, as well as disinfectant cleaning products and microfiber cloth. All examined bacterial strains exhibited a distinctive double-peak fluorescence feature associated with tryptophan with no other cellular fluorophore detected. Thus, this fluorescence survey found that an emission peak of 340nm, from an excitation source at 280nm, was the cellular fluorescence signal to target for detection of bacterial contamination. The majority of materials analysed offer a spectral window through which bacterial contamination could indeed be detected. A few instances were found of potential problems of background fluorescence masking that of bacteria, but in the case of the microfiber cleaning cloth, imaging techniques could morphologically distinguish between stray strands and bacterial contamination

    Experimental determination of the permeability of engineering textiles: Benchmark II

    Get PDF
    In this second international permeability benchmark, the in-plane permeability values of a carbon fabric were studied by twelve research groups worldwide. One participant also investigated the deformation of the tested carbon fabric. The aim of this work was to obtain comparable results in order to make a step toward standardization of permeability measurements. Unidirectional injections were thus conducted to determine the unsaturated in-plane permeability tensor of the fabric. Procedures used by participants were specified in the guidelines defined for this benchmark. Participants were asked to use the same values for parameters such as fiber volume fraction, injection pressure and fluid viscosity to minimize sources of scatter. The comparison of the results from each participant was encouraging. The scatter between data obtained while respecting the guidelines was below 25%. However, a higher dispersion was observed when some parameters differed from the recommendations of this exercise.The authors are grateful to J.M. Beraud from Hexcel Fabrics for his support that made possible this exercise. The contributions of J.B. Alms, N.C. Correia, S. Advani, E. Ruiz and P.C.T. Goncalves to the preparation of the guidelines document and templates are acknowledged by the participants of this benchmark.Vernet, N.; Ruiz, E.; Advani, S.; Alms, JB.; Aubert, M.; Barburski, M.; Barari, B.... (2014). Experimental determination of the permeability of engineering textiles: Benchmark II. Composites Part A: Applied Science and Manufacturing. 61:172-184. doi:10.1016/j.compositesa.2014.02.010S1721846

    Characterization of the dynamic friction of woven fabrics: Experimental methods and benchmark results

    Get PDF
    A benchmark exercise was conducted to compare various friction test set-ups with respect to the measured coefficients of friction. The friction was determined between Twintex®PP, a fabric of commingled yarns of glass and polypropylene filaments, and a metal surface. The same material was supplied to all benchmark participants and the test conditions were prescribed, making the used set-up the most important variable among the laboratories. Tests at ambient temperature as well as tests above the melting point of polypropylene are part of the benchmark, in order to determine both the dry and hydrodynamic friction characteristics. The dependency on sliding velocity, average pressure and temperature was investigated. Systematic differences are observed between the measurements obtained by the different set-ups, which are discussed and related to design characteristics of the devices. The values obtained in this benchmark are comparable and may serve as a reference to evaluate other friction set-ups. The paper concludes with guidelines for the design of a friction teste

    Experimental determination of the permeability of textiles: A benchmark exercise

    No full text
    In this international permeability benchmark exercise, in-plane permeability data for two reinforcement fabrics, obtained using a total of 16 different experimental procedures, were compared. Although, for each procedure, the results appear consistent, different procedures result in a scatter of up to one order of magnitude in principal permeability values for each fabric at any given fibre volume fraction. The ratio of the principal permeability values varies by factors of up to 2. While experimental uncertainties and variability of the specimens affect the scatter in results for any single series of experiments, it is suspected that the main source of scatter in results from different procedures is related to human factors. Aiming at standardisation of measurement methods and interchangeability of results, "good practice" guidelines will be formulated in order to eliminate sources of scatter. (C) 2011 Elsevier Ltd. All rights reserved

    Experimental determination of the permeability of textiles: a benchmark exercise

    No full text
    In this international permeability benchmark exercise, in-plane permeability data for two reinforcement fabrics, obtained using a total of 16 different experimental procedures, were compared. Although, for each procedure, the results appear consistent, different procedures result in a scatter of up to one order of magnitude in principal permeability values for each fabric at any given fibre volume fraction. The ratio of the principal permeability values varies by factors of up to 2. While experimental uncertainties and variability of the specimens affect the scatter in results for any single series of experiments, it is suspected that the main source of scatter in results from different procedures is related to human factors. Aiming at standardisation of measurement methods and interchangeability of results, "good practice" guidelines will be formulated in order to eliminate sources of scatter. (C) 2011 Elsevier Ltd. All rights reserved.status: publishe

    In-plane permeability characterization of engineering textiles based on radial flow experiments: A benchmark exercise

    No full text
    © 2019 Elsevier Ltd Although good progress was made by two international benchmark exercises on in-plane permeability, existing methods have not yet been standardized. This paper presents the results of a third benchmark exercise using in-plane permeability measurement, based on systems applying the radial unsaturated injection method. 19 participants using 20 systems characterized a non-crimp and a woven fabric at three different fiber volume contents, using a commercially available silicone oil as impregnating fluid. They followed a detailed characterization procedure and also completed a questionnaire on their set-up and analysis methods. Excluding outliers (2 of 20), the average coefficient of variation (c v ) between the participant's results was 32% and 44% (non-crimp and woven fabric), while the average c v for individual participants was 8% and 12%, respectively. This indicates statistically significant variations between the measurement systems. Cavity deformation was identified as a major influence, besides fluid pressure/viscosity measurement, textile variations, and data analysis.status: publishe
    corecore