37 research outputs found

    Exploring Pathways for Building Trust in Vaccination and Strengthening Health System Resilience

    Get PDF
    Background: Trust is critical to generate and maintain demand for vaccines in low and middle income countries. However, there is little documentation on how health system insufficiencies affect trust in vaccination and the process of re-building trust once it has been compromised. We reflect on how disruptions to immunizations systems can affect trust in vaccination and can compromise vaccine utilization. We then explore key pathways for overcoming system vulnerabilities in order to restore trust, to strengthen the resilience of health systems and communities, and to promote vaccine utilization. Methods: Utilizing secondary data and a review of the literature, we developed a causal loop diagram (CLD) to map the determinants of building trust in immunizations. Using the CLD, we devised three scenarios to illustrate common vulnerabilities that compromise trust and pathways to strengthen trust and utilization of vaccines, specifically looking at weak health systems, harmful communication channels, and role of social capital. Spill-over effects, interactions and other dynamics in the CLD were then examined to assess leverage points to counter these vulnerabilities. Results: Trust in vaccination arises from the interactions among experiences with the health system, the various forms of communication and social capital – both external and internal to communities. When experiencing system-wide shocks such as the case in Ebola-affected countries, distrust is reinforced by feedback between the health and immunization systems where distrust often lingers even after systems are restored and spills over beyond vaccination in the broader health system. Vaccine myths or anti-vaccine movements reinforce distrust. Social capital – the collective value of social networks of community members – plays a central role in increasing levels of trust. Conclusions: Trust is important, yet underexplored, in the context of vaccine utilization. Using a CLD to illustrate various scenarios helped to explore how common health and vaccine vulnerabilities can reinforce and spill over distrust through vicious, reinforcing feedback. Restoring trust requires a careful balance between eliminating vulnerabilities and strengthening social capital and interactions among communication channels

    Detailed Anatomical and Electrophysiological Models of Human Atria and Torso for the Simulation of Atrial Activation

    Get PDF
    Atrial arrhythmias, and specifically atrial fibrillation (AF), induce rapid and irregular activation patterns that appear on the torso surface as abnormal P-waves in electrocardiograms and body surface potential maps (BSPM). In recent years both P-waves and the BSPM have been used to identify the mechanisms underlying AF, such as localizing ectopic foci or high-frequency rotors. However, the relationship between the activation of the different areas of the atria and the characteristics of the BSPM and P-wave signals are still far from being completely understood. In this work we developed a multi-scale framework, which combines a highly-detailed 3D atrial model and a torso model to study the relationship between atrial activation and surface signals in sinus rhythm. Using this multi scale model, it was revealed that the best places for recording P-waves are the frontal upper right and the frontal and rear left quadrants of the torso. Our results also suggest that only nine regions (of the twenty-one structures in which the atrial surface was divided) make a significant contribution to the BSPM and determine the main P-wave characteristics.This work was partially supported by the "VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica" from the Ministerio de Economia y Competitividad of Spain and the European Commission (European Regional Development Funds - ERDF - FEDER), Award Number: TIN2012-37546-C03-01 (Recipient: Ana Ferrer); the "Programa Estatal de Investigacion, Desarrollo e Innovacion Orientado a los Retos de la Sociedad" from the Ministerio de Economia y Competitividad and the European Commission (European Regional Development Funds - ERDF - FEDER), Award Number: TIN2014-59932-JIN (Recipient: Rafael Sebastion); and the "Programa Prometeo" from the Generalitat Valenciana, Award Number: 2012/030 (Recipient: Laura Martinez).Ferrer Albero, A.; Sebastián Aguilar, R.; Sánchez Quintana, D.; Rodriguez, JF.; Godoy, EJ.; Martinez, L.; Saiz Rodríguez, FJ. (2015). Detailed Anatomical and Electrophysiological Models of Human Atria and Torso for the Simulation of Atrial Activation. PLoS ONE. 10(11):1-29. https://doi.org/10.1371/journal.pone.0141573S129101

    Structural and electron aspects of nitrogen–nitrogen bond

    No full text
    Azot, podobnie jak wiele innych pierwiastków chemicznych, posiada zdolność do katenacji. Największą grupę związków z układami Nx stanowią te, które zawierają dwa atomy azotu, a najliczniejszą wśród nich a najliczniejsze wśród nich to związki –hydrazo, –azo, –azoksy, –azodioksy oraz związki zawierające grupę nitraminową. W prezentowanych badaniach dla ustalenia zmian w długości wiązania azot–azot wyliczono średnie jej wartości na podstawie obliczeń kwantowo-mechanicznych oraz danych z krystalograficznej bazy CSD. Dodatkowo, przy użyciu indeksu aromatyczności HOMA opartego na kryteriach geometrycznyche, wyliczono aromatyczność pierścieni fenylowych związanych z analizowanymi grupami funkcyjnymi.Nitrogen, like many other chemical elements, has catenation ability. The largest family of compounds containing Nx systems are compounds containing two nitrogen atoms, and the most numerous among them are hydrazo, azo, azoxy, azodioxy compounds and compounds with nitramine group. In the presented studies for determining changes in nitrogennitrogen bond length, average lengths were calculated based on quantum mechanical calculations and data from crystallographic database CSD. Furthermore, the aromaticity of phenyl rings connected to studied functional groups was calculated using HOMA aromaticity index based on geometric criteria

    Dipolar excitations at the L3 x-ray absorption edges of the heavy rare earth metals

    Get PDF
    We report measured dipolar asymmetry ratios at the LIII edges of the heavy rare earth metals. The results are compared with a first principles calculation and excellent agreement is found. A simple model of the scattering is developed, enabling us to re-interpret the resonant x-ray scattering in these materials and to identify the peaks in the asymmetry ratios with features in the spin and orbital moment densities

    Brown et al. Reply:

    Get PDF
    We report measured dipolar asymmetry ratios at the LIII edges of the heavy rare-earth metals. The results are compared with a first-principles calculation and excellent agreement is found. A simple model of the scattering is developed, enabling us to reinterpret the resonant x-ray scattering in these materials and to identify the peaks in the asymmetry ratios with features in the spin and orbital moment densities

    Isostructural phase transition, quasielastic neutron scattering and magnetic resonance studies of a bistable dielectric ion-pair crystal [(CH3)2 NH2]2 KCr(CN)6

    No full text
    We have synthesised and characterised a novel organic–inorganic hybrid crystal, [(CH3)2NH2]2KCr(CN)6. The thermal DSC, TMA, DTG and DTA analyses indicate two solid-to-solid structural phase transitions (PTs). According to the X-ray diffraction experiments, the first PT at 220 K is isostructural, since it does not involve a change of the space group. This transition occurs between the states, where the (CH3)2NH2+ cations are orientationally disordered and ordered (frozen). The other reversible PT at 481 K leads to a melt-like phase similar to the one observed in plastic crystals or polar liquids. Dielectric spectroscopy has been used to characterise the switching properties of the dipole moments in the vicinity of the PTs. Continuous-wave electron paramagnetic resonance spectroscopy was employed to investigate the effect of ordering on the local environment of the Cr3+ ions. We have also applied the quasielastic neutron scattering (QENS) technique as well as 1H NMR spectroscopy to measure the dynamics of the (CH3)2NH2+ cations residing in the inorganic framework

    A vicious cycle among cognitions and behaviors enhancing risk for eating disorders

    Get PDF
    © 2017 The Author(s). Background: Establishing the sequence in which risk factors for eating disorders (ED) emerge would enable more effective ED prevention. Thus, in our study we investigated reciprocal and indirect associations between three cognitive and behavioral ED determinants (appearance orientation, appearance worries, and dieting) emphasized in the transdiagnostic model of ED. Methods: Data were collected in a non-clinical group of adolescents at Time 1 (T1),and then 2-months (Time 2, T2) and 13-months later(Time 3, T3). Participants (N=1260) aged 13-19 completed a questionnaire encompassing their nutrition behaviors, beliefs about appearance, health and well-being. Weight and height were measured objectively. Results: Higher levels of appearance orientation (T1) were associated with higher levels of appearance worries (T2) which in turn predicted dieting (T3). Dieting (T1) predicted higher levels of appearance orientation (T2) which in turn predicted higher levels of appearance worries (T3). Higher levels of appearance worries (T1) were associated with higher levels of appearance orientation (T2) which in turn predicted dieting (T3). Also, higher levels of appearance worries (T1) were associated with dieting (T2), and higher levels of appearance orientation (T3). Conclusions: The three transdiagnostic model variables formed a vicious cycle. Therefore, higher levels of one of ED determinants (appearance orientation, appearance worries or dieting) increase the likelihood of the elevated levels of two other ED determinants at follow-ups and thus enhances the risk for ED

    Cyano-bridged perovskite [(CH3)3NOH]2[KM(CN)6],[M: Fe(III), and Co(III)] for high-temperature multi-axialferroelectric applications with enhanced thermaland nonlinear optical performance

    No full text
    Highly stable ferroelectrics with reversible high-temperature phase transitions and switchable nonlinear optical behaviour are much coveted targets for emerging optoelectronic applications. Here, we demonstrate a cyano-bridged perovskite [(CH3)3NOH]2[KCo(CN)6] (TMAO-Co), a new analogue of the multi-axial ferroelectric [(CH3)3NOH]2[KFe(CN)6] (TMAO-Fe) with improved thermal stability and enhanced second-order nonlinear optical response. Indeed, for TMAO-Co the Curie temperature (Tc) is shifted to a higher value of ca. 416 K (improvement by ca. 10 K versus TMAO-Fe); the separation between Tc and the decomposition threshold is 46 K. TMAO-Co is a biaxial ferroelectric as revealed by P(E) hysteresis loop measurements along the a and c crystallographic directions with spontaneous polarization values of 0.9 and 0.63 μC cm−2 at 293 K, respectively. The SHG response of TMAO-Co is two times higher than that of TMAO-Fe. The improved stability of TMAO-Co to thermal and optical loads allowed for demonstration of bistable switching of nonlinear optical response between SHG-on and SHG-off states by temperature sweeping. Structurally, TMAO-Co reproduces the unusual characteristics of TMAO-Fe, i.e. the first-order phase transition between (polar) monoclinic to (nonpolar) cubic phases involving bond switching and is assisted by the pronounced increase of disorder of the TMAO cations above Tc. Combined temperature-resolved Raman and infrared spectroscopic measurements were employed to track the symmetry increase above Tc, which is primarily associated with changes in hydrogen-bonding. Consistent with the bond-switching character of the phase transitions, a pronounced shift to higher wavenumbers is observed for the O–H stretching modes. The DFT calculations demonstrate that the system's polarization along the a-axis mostly comes from the rotation of the [(CH3)3NOH]2 cluster, while the atomic displacement of the framework contributes largely to that along the c axis
    corecore