432 research outputs found
Status Update of the Parkes Pulsar Timing Array
The Parkes Pulsar Timing Array project aims to make a direct detection of a
gravitational-wave background through timing of millisecond pulsars. In this
article, the main requirements for that endeavour are described and recent and
ongoing progress is outlined. We demonstrate that the timing properties of
millisecond pulsars are adequate and that technological progress is timely to
expect a successful detection of gravitational waves within a decade, or
alternatively to rule out all current predictions for gravitational wave
backgrounds formed by supermassive black-hole mergers.Comment: 10 pages, 3 figures, Amaldi 8 conference proceedings, accepted by
Classical & Quantum Gravit
Development of a pulsar-based timescale
Using observations of pulsars from the Parkes Pulsar Timing Array (PPTA)
project we develop the first pulsar-based timescale that has a precision
comparable to the uncertainties in international atomic timescales. Our
ensemble of pulsars provides an Ensemble Pulsar Scale (EPS) analogous to the
free atomic timescale Echelle Atomique Libre (EAL). The EPS can be used to
detect fluctuations in atomic timescales and therefore can lead to a new
realisation of Terrestrial Time, TT(PPTA11). We successfully follow features
known to affect the frequency of the International Atomic Timescale (TAI) and
we find marginally significant differences between TT(PPTA11) and TT(BIPM11).
We discuss the various phenomena that lead to a correlated signal in the pulsar
timing residuals and therefore limit the stability of the pulsar timescale.Comment: Accepted for publication in MNRA
The PULSE@Parkes project: A new observing technique for long-term pulsar monitoring
The PULSE@Parkes project has been designed to monitor the rotation of radio
pulsars over time spans of days to years. The observations are obtained using
the Parkes 64-m and 12-m radio telescopes by Australian and international high
school students. These students learn the basis of radio astronomy and
undertake small projects with their observations. The data are fully calibrated
and obtained with the state-of-the-art pulsar hardware available at Parkes. The
final data sets are archived and are currently being used to carry out studies
of 1) pulsar glitches, 2) timing noise, 3) pulse profile stability over long
time scales and 4) the extreme nulling phenomenon. The data are also included
in other projects such as gamma-ray observatory support and for the Parkes
Pulsar Timing Array project. In this paper we describe the current status of
the project and present the first scientific results from the Parkes 12-m radio
telescope. We emphasise that this project offers a straightforward means to
enthuse high school students and the general public about radio astronomy while
obtaining scientifically valuable data sets.Comment: accepted for publication by PAS
On detection of the stochastic gravitational-wave background using the Parkes pulsar timing array
We search for the signature of an isotropic stochastic gravitational-wave
background in pulsar timing observations using a frequency-domain correlation
technique. These observations, which span roughly 12 yr, were obtained with the
64-m Parkes radio telescope augmented by public domain observations from the
Arecibo Observatory. A wide range of signal processing issues unique to pulsar
timing and not previously presented in the literature are discussed. These
include the effects of quadratic removal, irregular sampling, and variable
errors which exacerbate the spectral leakage inherent in estimating the steep
red spectrum of the gravitational-wave background. These observations are found
to be consistent with the null hypothesis, that no gravitational-wave
background is present, with 76 percent confidence. We show that the detection
statistic is dominated by the contributions of only a few pulsars because of
the inhomogeneity of this data set. The issues of detecting the signature of a
gravitational-wave background with future observations are discussed.Comment: 12 pages, 8 figures, 7 tables, accepted for publication in MNRA
The Sensitivity of the Parkes Pulsar Timing Array to Individual Sources of Gravitational Waves
We present the sensitivity of the Parkes Pulsar Timing Array to gravitational
waves emitted by individual super-massive black-hole binary systems in the
early phases of coalescing at the cores of merged galaxies. Our analysis
includes a detailed study of the effects of fitting a pulsar timing model to
non-white timing residuals. Pulsar timing is sensitive at nanoHertz frequencies
and hence complementary to LIGO and LISA. We place a sky-averaged constraint on
the merger rate of nearby () black-hole binaries in the early phases
of coalescence with a chirp mass of 10^{10}\,\rmn{M}_\odot of less than one
merger every seven years. The prospects for future gravitational-wave astronomy
of this type with the proposed Square Kilometre Array telescope are discussed.Comment: fixed error in equation (4). [13 pages, 6 figures, 1 table, published
in MNRAS
Gravitational wave detection using pulsars: status of the Parkes Pulsar Timing Array project
The first direct detection of gravitational waves may be made through
observations of pulsars. The principal aim of pulsar timing array projects
being carried out worldwide is to detect ultra-low frequency gravitational
waves (f ~ 10^-9 to 10^-8 Hz). Such waves are expected to be caused by
coalescing supermassive binary black holes in the cores of merged galaxies. It
is also possible that a detectable signal could have been produced in the
inflationary era or by cosmic strings. In this paper we review the current
status of the Parkes Pulsar Timing Array project (the only such project in the
Southern hemisphere) and compare the pulsar timing technique with other forms
of gravitational-wave detection such as ground- and space-based interferometer
systems.Comment: Accepted for publication in PAS
Measurement and correction of variations in interstellar dispersion in high-precision pulsar timing
Signals from radio pulsars show a wavelength-dependent delay due to dispersion in the interstellar plasma. At a typical observing wavelength, this delay can vary by tens of microseconds on 5-yr time-scales, far in excess of signals of interest to pulsar timing arrays, such as that induced by a gravitational wave background. Measurement of these delay variations is not only crucial for the detection of such signals, but also provides an unparalleled measurement of the turbulent interstellar plasma at astronomical unit (au) scales.
In this paper we demonstrate that without consideration of wavelength-independent red noise, ‘simple’ algorithms to correct for interstellar dispersion can attenuate signals of interest to pulsar timing arrays. We present a robust method for this correction, which we validate through simulations, and apply it to observations from the Parkes Pulsar Timing Array. Correction for dispersion variations comes at a cost of increased band-limited white noise. We discuss scheduling to minimize this additional noise, and factors, such as scintillation, that can exacerbate the problem.
Comparison with scintillation measurements confirms previous results that the spectral exponent of electron density variations in the interstellar medium often appears steeper than expected. We also find a discrete change in dispersion measure of PSR J1603−7202 of ∼2 × 10^(−3) cm^(−3) pc for about 250 d. We speculate that this has a similar origin to the ‘extreme scattering events’ seen in other sources. In addition, we find that four pulsars show a wavelength-dependent annual variation, indicating a persistent gradient of electron density on an au spatial scale, which has not been reported previously
Timing stability of millisecond pulsars and prospects for gravitational-wave detection
The analysis of high-precision timing observations of an array of ∼20 millisecond pulsars (a so-called \u27timing array\u27) may ultimately result in the detection of a stochastic gravitational-wave background. The feasibility of such a detection and the required duration of this type of experiment are determined by the achievable rms of the timing residuals and the timing stability of the pulsars involved. We present results of the first long-term, high-precision timing campaign on a large sample of millisecond pulsars used in gravitational-wave detection projects. We show that the timing residuals of most pulsars in our sample do not contain significant low-frequency noise that could limit the use of these pulsars for decade-long gravitational-wave detection efforts. For our most precisely timed pulsars, intrinsic instabilities of the pulsars or the observing system are shown to contribute to timing irregularities on a 5-year time-scale below the 100 ns level. Based on those results, realistic sensitivity curves for planned and ongoing timing array efforts are determined. We conclude that prospects for detection of a gravitational-wave background through pulsar timing array efforts within 5 years to a decade are good. © 2009 RAS
- …